Nothing
context("apa_barplot()")
test_that(
"apa_barplot.default()"
, {
generic <- apa_factorial_plot(data = npk, id = "block", dv = "yield", factors = c("N", "P", "K"), plot = c("bars", "error_bars"), fun_aggregate = median, tendency = sum, dispersion = se)
x <- apa_barplot(data = npk, id = "block", dv = "yield", factors = c("N", "P", "K"), fun_aggregate = median, tendency = sum, dispersion = se)
expect_equal(
object = x
, expected = generic
)
}
)
test_that(
"apa_barplot.afex_aov()"
, {
afex_aov <- afex::aov_ez(data = npk, id = "block", within = c("N", "P"), dv = "yield")
generic_bar <- apa_factorial_plot(afex_aov, plot = c("bars", "error_bars"))
generic_line <- apa_factorial_plot(afex_aov, plot = c("lines", "error_bars", "points"))
generic_bee <- apa_factorial_plot(afex_aov, plot = c("swarms", "points", "error_bars"))
bar <- apa_barplot(afex_aov)
line <- apa_lineplot(afex_aov)
bee <- apa_beeplot(afex_aov)
expect_identical(
object = bar
, expected = generic_bar
)
expect_identical(
object = line
, expected = generic_line
)
expect_identical(
object = bee
, expected = generic_bee
)
}
)
context("apa_beeplot()")
test_that(
"apa_beeplot.default()"
, {
generic <- apa_factorial_plot(data = npk, id = "block", dv = "yield", factors = c("N", "P", "K"), plot = c("swarms", "points", "error_bars"), fun_aggregate = median, tendency = sum, dispersion = se)
x <- apa_beeplot(data = npk, id = "block", dv = "yield", factors = c("N", "P", "K"), fun_aggregate = median, tendency = sum, dispersion = se)
expect_equal(
object = x
, expected = generic
)
}
)
context("apa_lineplot()")
test_that(
"apa_lineplot.default()"
, {
generic <- apa_factorial_plot(data = npk, id = "block", dv = "yield", factors = c("N", "P", "K"), plot = c("lines", "points", "error_bars"), fun_aggregate = median, tendency = sum, dispersion = se)
x <- apa_lineplot(data = npk, id = "block", dv = "yield", factors = c("N", "P", "K"), fun_aggregate = median, tendency = sum, dispersion = se)
expect_equal(
object = x
, expected = generic
)
}
)
context("apa_factorial_plot()")
test_that(
"apa_factorial_plot.default(): calculations, and parameter `level`"
, {
data <- npk
out <- apa_factorial_plot(data = data, id = "block", dv = "yield", level = .75)
data$block <- as.factor(data$block)
variable_label(data[, c("block", "yield")]) <- c("block" = "block", "yield" = "yield")
aggregated <- aggregate(yield ~ block, data = data, FUN = mean)
tendency <- mean(aggregated$yield)
dispersion <- conf_int(aggregated$yield, level = .75)
expect_equal(
object = out$y[, c("tendency", "dispersion")]
, expected = data.frame(tendency, dispersion)
)
expect_equal(
object = out$data[, c("block", "yield")]
, expected = aggregated
)
}
)
test_that(
"apa_factorial_plot.default(): Inherit customizations"
, {
out <- apa_factorial_plot(
data = npk
, id = "block"
, dv = "yield"
, factors = c("N", "P")
, main = expression("test"~italic(T))
, plot = c("points", "swarms", "lines", "error_bars")
, args_points = list(pch = c(22, 23), bg = c("#FF0000", "#00FF00"), cex = c(0.99, .98), col = c("#0F0F0F", "#F0F0F0"))
, args_swarm = list(cex = 2)
, args_lines = list(col = c("#FF3766", "blue"), lwd = c(1, 3), lty = c(13, 14, 15))
, args_error_bars = list(col = "#FF6637")
)
expect_identical(
object = out$args$args_swarm$cex
, expected = c(2)
)
expect_identical(
object = out$args$args_swarm$pch
, expected = c(22, 23)
)
expect_identical(
object = out$args$args_lines$col
, expected = c("#FF3766", "blue")
)
expect_identical(
object = out$args$args_lines$lwd
, expected = c(1, 3)
)
expect_identical(
object = out$args$args_error_bars$col
, expected = "#FF6637"
)
expect_identical(
object = out$args$args_title$main
, expected = expression("test"~italic(T))
)
expect_identical(
object = out$args$args_legend
, expected = list(
title = "P"
, x = "topright"
, legend = c("0", "1")
, pch = c(22, 23)
, lty = c(13, 14, 15)
, bty = "n"
, pt.bg = c("#FF0000", "#00FF00")
, col = c("#0F0F0F", "#F0F0F0")
, pt.cex = c(.99, .98)
)
)
}
)
test_that(
"apa_factorial_plot.default(): Four-factors case"
, {
load("data/mixed_data.rdata")
object_1 <- apa_factorial_plot(
data = mixed_data
, id = "Subject"
, dv = "Recall"
, factors = c("Gender", "Dosage", "Task", "Valence")
, plot = c("lines", "points", "error_bars")
, dispersion = wsci
, level = .4
, intercept = 0
, fun_aggregate = mean
)
# Test if mandatory legend is plotted:
expect_identical(
object = object_1$args$plotCPos$args_legend$plot
, expected = TRUE
)
# Test more interesting stuff:
# ...
# ...
# ...
}
)
test_that(
'apa_factorial_plot.default(): use = "complete.obs"'
, {
object_1 <- apa_factorial_plot(
data = npk[2:24, ]
, id = "block"
, dv = "yield"
, factors = c("N", "P")
, dispersion = wsci
, use = "complete.obs"
, plot = c("lines", "points", "error_bars", "swarms", "bars")
)
expect_equal(
object = attributes(object_1$data)$removed_cases_implicit_NA
, expected = "1"
)
reference_object <- default_label(droplevels(npk[5:24, c("block", "N", "P", "yield")]))
attr(reference_object, "removed_cases_implicit_NA") <- "1"
expect_equal(
object = object_1$data
, expected = reference_object
)
}
)
suppressWarnings(file.remove("Rplots.pdf"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.