p_value: p-values

Description Usage Arguments Value Note Examples

View source: R/3_p_value.R

Description

This function attempts to return, or compute, p-values of a model's parameters. See the documentation for your object's class:

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
p_value(model, ...)

## Default S3 method:
p_value(
  model,
  dof = NULL,
  method = NULL,
  robust = FALSE,
  component = "all",
  verbose = TRUE,
  ...
)

## S3 method for class 'emmGrid'
p_value(model, ci = 0.95, adjust = "none", ...)

Arguments

model

A statistical model.

...

Arguments passed down to standard_error_robust() when confidence intervals or p-values based on robust standard errors should be computed. Only available for models where method = "robust" is supported.

dof

Number of degrees of freedom to be used when calculating confidence intervals. If NULL (default), the degrees of freedom are retrieved by calling degrees_of_freedom() with approximation method defined in method. If not NULL, use this argument to override the default degrees of freedom used to compute confidence intervals.

method

If "robust", and if model is supported by the sandwich or clubSandwich packages, computes p-values based on robust covariance matrix estimation.

robust

Logical, if TRUE, computes confidence intervals based on robust standard errors. See standard_error_robust().

component

Model component for which parameters should be shown. See the documentation for your object's class in model_parameters() for further details.

verbose

Toggle warnings and messages.

ci

Confidence Interval (CI) level. Default to 0.95 (95%).

adjust

Character value naming the method used to adjust p-values or confidence intervals. See ?emmeans::summary.emmGrid for details.

Value

A data frame with at least two columns: the parameter names and the p-values. Depending on the model, may also include columns for model components etc.

Note

p_value_robust() resp. p_value(robust = TRUE) rely on the sandwich or clubSandwich package (the latter if vcov_estimation = "CR" for cluster-robust standard errors) and will thus only work for those models supported by those packages.

Examples

1
2
3
data(iris)
model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
p_value(model)

parameters documentation built on Oct. 19, 2021, 1:07 a.m.