p_value_kenward: Kenward-Roger approximation for SEs, CIs and p-values

View source: R/p_value_kenward.R

ci_kenwardR Documentation

Kenward-Roger approximation for SEs, CIs and p-values

Description

An approximate F-test based on the Kenward-Roger (1997) approach.

Usage

ci_kenward(model, ci = 0.95)

dof_kenward(model)

p_value_kenward(model, dof = NULL)

se_kenward(model)

Arguments

model

A statistical model.

ci

Confidence Interval (CI) level. Default to 0.95 (⁠95%⁠).

dof

Degrees of Freedom.

Details

Inferential statistics (like p-values, confidence intervals and standard errors) may be biased in mixed models when the number of clusters is small (even if the sample size of level-1 units is high). In such cases it is recommended to approximate a more accurate number of degrees of freedom for such inferential statistics. Unlike simpler approximation heuristics like the "m-l-1" rule (dof_ml1), the Kenward-Roger approximation is also applicable in more complex multilevel designs, e.g. with cross-classified clusters. However, the "m-l-1" heuristic also applies to generalized mixed models, while approaches like Kenward-Roger or Satterthwaite are limited to linear mixed models only.

Value

A data frame.

References

Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 983-997.

See Also

dof_kenward() and se_kenward() are small helper-functions to calculate approximated degrees of freedom and standard errors for model parameters, based on the Kenward-Roger (1997) approach.

dof_satterthwaite() and dof_ml1() approximate degrees of freedom based on Satterthwaite's method or the "m-l-1" rule.

Examples


if (require("lme4", quietly = TRUE)) {
  model <- lmer(Petal.Length ~ Sepal.Length + (1 | Species), data = iris)
  p_value_kenward(model)
}


parameters documentation built on Oct. 18, 2024, 5:13 p.m.