The goal of parsnip is to provide a tidy, unified interface to models that can be used to try a range of models without getting bogged down in the syntactical minutiae of the underlying packages.
# The easiest way to get parsnip is to install all of tidymodels:
install.packages("tidymodels")
# Alternatively, install just parsnip:
install.packages("parsnip")
# Or the development version from GitHub:
# install.packages("pak")
pak::pak("tidymodels/parsnip")
One challenge with different modeling functions available in R that do the same thing is that they can have different interfaces and arguments. For example, to fit a random forest regression model, we might have:
# From randomForest
rf_1 <- randomForest(
y ~ .,
data = dat,
mtry = 10,
ntree = 2000,
importance = TRUE
)
# From ranger
rf_2 <- ranger(
y ~ .,
data = dat,
mtry = 10,
num.trees = 2000,
importance = "impurity"
)
# From sparklyr
rf_3 <- ml_random_forest(
dat,
intercept = FALSE,
response = "y",
features = names(dat)[names(dat) != "y"],
col.sample.rate = 10,
num.trees = 2000
)
Note that the model syntax can be very different and that the argument names (and formats) are also different. This is a pain if you switch between implementations.
In this example:
The goals of parsnip are to:
rand_forest
instead of ranger::ranger
or other
specific packages.n.trees
, ntrees
, trees
) so that
users only need to remember a single name. This will help across
model types too so that trees
will be the same argument across
random forest as well as boosting or bagging.Using the example above, the parsnip approach would be:
library(parsnip)
rand_forest(mtry = 10, trees = 2000) %>%
set_engine("ranger", importance = "impurity") %>%
set_mode("regression")
#> Random Forest Model Specification (regression)
#>
#> Main Arguments:
#> mtry = 10
#> trees = 2000
#>
#> Engine-Specific Arguments:
#> importance = impurity
#>
#> Computational engine: ranger
The engine can be easily changed. To use Spark, the change is straightforward:
rand_forest(mtry = 10, trees = 2000) %>%
set_engine("spark") %>%
set_mode("regression")
#> Random Forest Model Specification (regression)
#>
#> Main Arguments:
#> mtry = 10
#> trees = 2000
#>
#> Computational engine: spark
Either one of these model specifications can be fit in the same way:
set.seed(192)
rand_forest(mtry = 10, trees = 2000) %>%
set_engine("ranger", importance = "impurity") %>%
set_mode("regression") %>%
fit(mpg ~ ., data = mtcars)
#> parsnip model object
#>
#> Ranger result
#>
#> Call:
#> ranger::ranger(x = maybe_data_frame(x), y = y, mtry = min_cols(~10, x), num.trees = ~2000, importance = ~"impurity", num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1))
#>
#> Type: Regression
#> Number of trees: 2000
#> Sample size: 32
#> Number of independent variables: 10
#> Mtry: 10
#> Target node size: 5
#> Variable importance mode: impurity
#> Splitrule: variance
#> OOB prediction error (MSE): 5.976917
#> R squared (OOB): 0.8354559
A list of all parsnip models across different CRAN packages can be found at https://www.tidymodels.org/find/parsnip.
This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
For questions and discussions about tidymodels packages, modeling, and machine learning, please post on RStudio Community.
If you think you have encountered a bug, please submit an issue.
Either way, learn how to create and share a reprex (a minimal, reproducible example), to clearly communicate about your code.
Check out further details on contributing guidelines for tidymodels packages and how to get help.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.