| details_bart_dbarts | R Documentation |
dbarts::bart() creates an ensemble of tree-based model whose training
and assembly is determined using Bayesian analysis.
For this engine, there are multiple modes: classification and regression
This model has 4 tuning parameters:
trees: # Trees (type: integer, default: 200L)
prior_terminal_node_coef: Terminal Node Prior Coefficient (type:
double, default: 0.95)
prior_terminal_node_expo: Terminal Node Prior Exponent (type:
double, default: 2.00)
prior_outcome_range: Prior for Outcome Range (type: double, default:
2.00)
Parsnip changes the default range for trees to c(50, 500).
Some relevant arguments that can be passed to set_engine():
keepevery, n.thin: Every keepevery draw is kept to be returned
to the user. Useful for “thinning” samples.
ntree, n.trees: The number of trees in the sum-of-trees
formulation.
ndpost, n.samples: The number of posterior draws after burn in,
ndpost / keepevery will actually be returned.
nskip, n.burn: Number of MCMC iterations to be treated as burn in.
nchain, n.chains: Integer specifying how many independent tree
sets and fits should be calculated.
nthread, n.threads: Integer specifying how many threads to use.
Depending on the CPU architecture, using more than the number of
chains can degrade performance for small/medium data sets. As such
some calculations may be executed single threaded regardless.
combinechains, combineChains: Logical; if TRUE, samples will be
returned in arrays of dimensions equal to nchain times ndpost
times number of observations.
parsnip::bart(
trees = integer(1),
prior_terminal_node_coef = double(1),
prior_terminal_node_expo = double(1),
prior_outcome_range = double(1)
) |>
set_engine("dbarts") |>
set_mode("classification") |>
translate() |>
print_model_spec()
## BART Model Specification (classification) ## ## Main Arguments: ## trees = integer(1) ## prior_terminal_node_coef = double(1) ## prior_terminal_node_expo = double(1) ## prior_outcome_range = double(1) ## ## Computational engine: dbarts ## ## Model fit template: ## dbarts::bart(x = missing_arg(), y = missing_arg(), ntree = integer(1), ## base = double(1), power = double(1), k = double(1), verbose = FALSE, ## keeptrees = TRUE, keepcall = FALSE)
parsnip::bart(
trees = integer(1),
prior_terminal_node_coef = double(1),
prior_terminal_node_expo = double(1),
prior_outcome_range = double(1)
) |>
set_engine("dbarts") |>
set_mode("regression") |>
translate()|>
print_model_spec()
## BART Model Specification (regression) ## ## Main Arguments: ## trees = integer(1) ## prior_terminal_node_coef = double(1) ## prior_terminal_node_expo = double(1) ## prior_outcome_range = double(1) ## ## Computational engine: dbarts ## ## Model fit template: ## dbarts::bart(x = missing_arg(), y = missing_arg(), ntree = integer(1), ## base = double(1), power = double(1), k = double(1), verbose = FALSE, ## keeptrees = TRUE, keepcall = FALSE)
Factor/categorical predictors need to be converted to numeric values
(e.g., dummy or indicator variables) for this engine. When using the
formula method via fit(), parsnip will
convert factor columns to indicators.
dbarts::bart() will also convert the factors to
indicators if the user does not create them first.
Chipman, George, McCulloch. “BART: Bayesian additive regression trees.” Ann. Appl. Stat. 4 (1) 266 - 298, March 2010.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.