details_bart_dbarts | R Documentation |
dbarts::bart()
creates an ensemble of tree-based model whose training
and assembly is determined using Bayesian analysis.
For this engine, there are multiple modes: classification and regression
This model has 4 tuning parameters:
trees
: # Trees (type: integer, default: 200L)
prior_terminal_node_coef
: Terminal Node Prior Coefficient (type:
double, default: 0.95)
prior_terminal_node_expo
: Terminal Node Prior Exponent (type:
double, default: 2.00)
prior_outcome_range
: Prior for Outcome Range (type: double, default:
2.00)
Some relevant arguments that can be passed to set_engine()
:
keepevery
, n.thin
: Every keepevery
draw is kept to be returned
to the user. Useful for “thinning” samples.
ntree
, n.trees
: The number of trees in the sum-of-trees
formulation.
ndpost
, n.samples
: The number of posterior draws after burn in,
ndpost
/ keepevery
will actually be returned.
nskip
, n.burn
: Number of MCMC iterations to be treated as burn in.
nchain
, n.chains
: Integer specifying how many independent tree
sets and fits should be calculated.
nthread
, n.threads
: Integer specifying how many threads to use.
Depending on the CPU architecture, using more than the number of
chains can degrade performance for small/medium data sets. As such
some calculations may be executed single threaded regardless.
combinechains
, combineChains
: Logical; if TRUE
, samples will be
returned in arrays of dimensions equal to nchain
times ndpost
times number of observations.
bart( trees = integer(1), prior_terminal_node_coef = double(1), prior_terminal_node_expo = double(1), prior_outcome_range = double(1) ) %>% set_engine("dbarts") %>% set_mode("classification") %>% translate()
## BART Model Specification (classification) ## ## Main Arguments: ## trees = integer(1) ## prior_terminal_node_coef = double(1) ## prior_terminal_node_expo = double(1) ## prior_outcome_range = double(1) ## ## Computational engine: dbarts ## ## Model fit template: ## dbarts::bart(x = missing_arg(), y = missing_arg(), ntree = integer(1), ## base = double(1), power = double(1), k = double(1), verbose = FALSE, ## keeptrees = TRUE, keepcall = FALSE)
bart( trees = integer(1), prior_terminal_node_coef = double(1), prior_terminal_node_expo = double(1), prior_outcome_range = double(1) ) %>% set_engine("dbarts") %>% set_mode("regression") %>% translate()
## BART Model Specification (regression) ## ## Main Arguments: ## trees = integer(1) ## prior_terminal_node_coef = double(1) ## prior_terminal_node_expo = double(1) ## prior_outcome_range = double(1) ## ## Computational engine: dbarts ## ## Model fit template: ## dbarts::bart(x = missing_arg(), y = missing_arg(), ntree = integer(1), ## base = double(1), power = double(1), k = double(1), verbose = FALSE, ## keeptrees = TRUE, keepcall = FALSE)
Factor/categorical predictors need to be converted to numeric values
(e.g., dummy or indicator variables) for this engine. When using the
formula method via fit()
, parsnip will
convert factor columns to indicators.
dbarts::bart()
will also convert the factors to
indicators if the user does not create them first.
Chipman, George, McCulloch. “BART: Bayesian additive regression trees.” Ann. Appl. Stat. 4 (1) 266 - 298, March 2010.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.