View source: R/decision_tree.R
decision_tree | R Documentation |
decision_tree()
defines a model as a set of if/then
statements that
creates a tree-based structure. This function can fit classification,
regression, and censored regression models.
More information on how parsnip is used for modeling is at https://www.tidymodels.org/.
decision_tree(
mode = "unknown",
engine = "rpart",
cost_complexity = NULL,
tree_depth = NULL,
min_n = NULL
)
mode |
A single character string for the prediction outcome mode. Possible values for this model are "unknown", "regression", "classification", or "censored regression". |
engine |
A single character string specifying what computational engine to use for fitting. |
cost_complexity |
A positive number for the the cost/complexity
parameter (a.k.a. |
tree_depth |
An integer for maximum depth of the tree. |
min_n |
An integer for the minimum number of data points in a node that are required for the node to be split further. |
This function only defines what type of model is being fit. Once an engine
is specified, the method to fit the model is also defined. See
set_engine()
for more on setting the engine, including how to set engine
arguments.
The model is not trained or fit until the fit()
function is used
with the data.
Each of the arguments in this function other than mode
and engine
are
captured as quosures. To pass values
programmatically, use the injection operator like so:
value <- 1 decision_tree(argument = !!value)
https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models
show_engines("decision_tree")
decision_tree(mode = "classification", tree_depth = 5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.