bag_mars | R Documentation |
bag_mars()
defines an ensemble of generalized linear models that use
artificial features for some predictors. These features resemble hinge
functions and the result is a model that is a segmented regression in small
dimensions. This function can fit classification and regression models.
More information on how parsnip is used for modeling is at https://www.tidymodels.org/.
bag_mars( mode = "unknown", num_terms = NULL, prod_degree = NULL, prune_method = NULL, engine = "earth" )
mode |
A single character string for the prediction outcome mode. Possible values for this model are "unknown", "regression", or "classification". |
num_terms |
The number of features that will be retained in the final model, including the intercept. |
prod_degree |
The highest possible interaction degree. |
prune_method |
The pruning method. |
engine |
A single character string specifying what computational engine to use for fitting. |
This function only defines what type of model is being fit. Once an engine
is specified, the method to fit the model is also defined. See
set_engine()
for more on setting the engine, including how to set engine
arguments.
The model is not trained or fit until the fit()
function is used
with the data.
https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.