details_bag_mlp_nnet | R Documentation |
baguette::bagger()
creates a collection of neural networks forming an
ensemble. All trees in the ensemble are combined to produce a final prediction.
For this engine, there are multiple modes: classification and regression
This model has 3 tuning parameters:
hidden_units
: # Hidden Units (type: integer, default: 10L)
penalty
: Amount of Regularization (type: double, default: 0.0)
epochs
: # Epochs (type: integer, default: 1000L)
These defaults are set by the baguette
package and are different than
those in nnet::nnet()
.
The baguette extension package is required to fit this model.
library(baguette) bag_mlp(penalty = double(1), hidden_units = integer(1)) %>% set_engine("nnet") %>% set_mode("classification") %>% translate()
## Bagged Neural Network Model Specification (classification) ## ## Main Arguments: ## hidden_units = integer(1) ## penalty = double(1) ## ## Computational engine: nnet ## ## Model fit template: ## baguette::bagger(formula = missing_arg(), data = missing_arg(), ## weights = missing_arg(), size = integer(1), decay = double(1), ## base_model = "nnet")
The baguette extension package is required to fit this model.
library(baguette) bag_mlp(penalty = double(1), hidden_units = integer(1)) %>% set_engine("nnet") %>% set_mode("regression") %>% translate()
## Bagged Neural Network Model Specification (regression) ## ## Main Arguments: ## hidden_units = integer(1) ## penalty = double(1) ## ## Computational engine: nnet ## ## Model fit template: ## baguette::bagger(formula = missing_arg(), data = missing_arg(), ## weights = missing_arg(), size = integer(1), decay = double(1), ## base_model = "nnet")
Factor/categorical predictors need to be converted to numeric values
(e.g., dummy or indicator variables) for this engine. When using the
formula method via fit()
, parsnip will
convert factor columns to indicators.
Predictors should have the same scale. One way to achieve this is to center and scale each so that each predictor has mean zero and a variance of one.
The underlying model implementation does not allow for case weights.
Breiman L. 1996. “Bagging predictors”. Machine Learning. 24 (2): 123-140
Kuhn, M, and K Johnson. 2013. Applied Predictive Modeling. Springer.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.