R/genRandDAG.R

Defines functions findGamma generalHarmonic erDAG geoDAG powerLawDAG undirunweight.to.dirweight randDAG sampleQ m2g

Documented in randDAG

## Runif <- function(nrEdges, lB=0.1, uB=1) {
##   runif(nrEdges, lB, uB)
## }
m2g <- function(m) {
    ## INPUT: valid adjacency matrix
    ## m[i, j] = 1 corresponds to i -> j with weight 1
    ## OUTPUT: corresponding graphNEL object
    ## Improves 'as(Q, "graphNEL")' since neg weights are now OK
    ## m2g is tested in bugs: Jun15_randDAG
    n <- ncol(m)
    V <- colnames(m)
    edL <- vector("list", n)
    nmbEdges <- 0L
    for (i in seq_len(n)) {
        idx <- which( m[i, ] != 0 )
        nmbEdges <- nmbEdges + length(idx)
        edL[[i]] <- list(edges = idx, weights = m[i, idx])
    }
    if (nmbEdges > 0) {
	names(edL) <- V
	new("graphNEL", nodes = V, edgeL = edL, edgemode = "directed")
    }
    else
	new("graphNEL", nodes = V, edgemode = "directed")
}

## construct DAG (matrix Q) recursively ###########################
sampleQ <- function(n, K, p.w=1/2) {

  Q <- matrix(0, n, n)
  I <- length(K)
  j <- K[I]
  if(I >= 2) for(i in I:2) { # i = I, I-1, ..., 2
    Ki_1 <- K[i-1L]
    j. <- j + Ki_1
    for(p in (j-K[i]+1):j) {
      repeat{
        for(m in (j+1):j.) { ## FIXME rbinom(1, nn, *)
          Q[m, p] <- rbinom(1, 1, p.w)
        }
        if(sum(Q[(j+1):j., p])>0)
          break
      }
      if(i > 2) {
        for(m in (j.+1):n) { ## FIXME rbinom(1, nn, *)
          Q[m, p] <- rbinom(1, 1, p.w)
        }
      }
    }
    j <- j.
  }
  Q
}

################################################## ---> ../man/randDAG.Rd
##							-----------------
##' Random DAGs from igraph
randDAG <- function(n, d, method = "er", par1=NULL, par2=NULL, DAG = TRUE,
                    weighted = TRUE, wFUN = list(runif, min=0.1, max=1))
{
  if(!is.list(wFUN))
    wFUN <- list(wFUN)

  ## From igraph graph to upper triangular Q - via random re-labeling
  g2Q <- function(g, sparse=FALSE) {
    Q <- as_adjacency_matrix(g, sparse=sparse)
    perm <- sample.int(n)
    Q <- Q[perm, perm]
    Q * upper.tri(Q)
  }

  switch(method,
         "er" = {
           Q <- erDAG(n, p = d / (n-1))
         },

         "regular" = {
           ## s = d = number of neighbours in expectation
           s <- d
           g <- sample_k_regular(no.of.nodes = n, 
                                 k = s)
	   Q <- g2Q(g)
         },

         "watts" = {
           ## par1 = beta = fraction of interpolating between regular lattice (0) and ER (1)
           beta <- if(is.numeric(par1)) par1 else 1/2
           ## s = number of neighbours in expectation:
           s <- round(d/2)
           g <- sample_smallworld(dim = 1, 
                                  size = n, 
                                  nei = s, 
                                  p = beta)
	   Q <- g2Q(simplify(g))
         },

         "bipartite" = {
           ## par1 = alpha := fraction of part one
           alpha <- if(is.numeric(par1)) par1 else 1/2
           ## p = probability of connecting between two parts :
           p <- d/(2*alpha*(1-alpha)*n)
           n1 <- ceiling(n*alpha)
           n2 <- floor(n*(1-alpha))
           g <- sample_bipartite(n1=n1, n2=n2, type="gnp", p=p)
	   Q <- g2Q(g)
         },

         "barabasi" = {
           ## par1 = power = power of preferential attachment
           power <- if(is.numeric(par1)) par1 else 1
           ## m = number of nodes adding in each step
           m <- round(d/2)

           mbar <- (2*m*n-m^2+m)/(2*(n-m))
           seq <- sample(c(m, m+1), n, replace=TRUE, prob=c(1-mbar+m, mbar-m))

           g <- sample_pa(n=n, power=power, out.seq=seq, out.pref=TRUE, directed=FALSE)
	   Q <- g2Q(simplify(g))
         },

         "geometric" = {
           ## par1: dim=dimension:
           ## par2: if "geo", then weights are reciprocal to distances
           dim <- if(is.numeric(par1)) par1 else 2
           geo2 <- (is.character(par2) &&  par2 == "geo") # T / F
           ## r = euclidian radius :
           r <- ( (d*gamma(dim/2+1)) / ((n-1)*pi^(dim/2)) )^(1/dim)
           return( geoDAG(n, r, dim=dim, geo=geo2, DAG=DAG, weighted=weighted, wFUN=wFUN) )
         },

         "power" = {
           gamma <- findGamma(n, d)
           g <- powerLawDAG(n, gamma)
           Q <- g2Q(g)
         },

         "interEr" = {
           ## par1 = s.island = number of islands, n/s.island should be a positive integer
           ## par2 = alpha = fraction of inter connectivity

           s.island <- if(is.numeric(par1)) par1 else 2
           alpha    <- if(is.numeric(par2)) par2 else 1/4
           stopifnot(n %% s.island == 0)

           ## p = probability of connecting edges intra
           p <- 2*d*s.island / ((n-s.island)*(2+alpha))
           stopifnot(0 < p, p <= 1)

           m <- round((alpha*p*(n-2*s.island)*(n-s.island))/(2*s.island^2*(s.island-1)))
           g <- sample_islands(islands.n = s.island, 
                               islands.size = n/s.island, 
                               islands.pin = p, 
                               n.inter = m)
	   Q <- g2Q(g)
         },
         stop("unsupported 'method': ", method))## switch end

  ## return
  undirunweight.to.dirweight(Q, n, DAG=DAG, weighted=weighted, wFUN=wFUN)
}

## AUX-FUNCTIONS ####################################
undirunweight.to.dirweight <- function(Q, n, DAG, weighted,
                                       wFUN = list(runif, min=0.1, max = 1)) {
## input Q: upper triangular matrix
  if(weighted) {
    nrEdge <- sum(Q)
    Q[Q==1] <- do.call(wFUN[[1]], c(nrEdge, wFUN[-1]))
  }

  if(!DAG) Q <- Q+t(Q)

  perm <- sample.int(n)
  Q <- Q[perm, perm]
  colnames(Q) <- rownames(Q) <- 1:n
  ## as(Q, "graphNEL")
  m2g(Q)
}

powerLawDAG <- function(n, gamma, maxtry = 20L) {
  ## generate power-law distribution
  stopifnot((n <- as.integer(n)) >= 2,
            (maxtry <- as.integer(maxtry)) >= 1)
  in1 <- seq_len(n - 1L)
  dist <- in1^(-gamma)
  dist <- dist/sum(dist)

  for(i in seq_len(maxtry)) {
    ## sample degree for each node among distribution
    degs <- sample(in1, size=n, replace=TRUE, prob=dist)
    ## if sum is not even, make it, by subtracting one from the last:
    if(sum(degs) %% 2 == 1)
      degs[which.max(degs)] <- degs[which.max(degs)] - 1L
    ## try: sometimes its not possible to construct graph for computed sequence
    g <- tryCatch(sample_degseq(out.deg = degs, method="vl"), error = function(e) e)
    if(!inherits(g, "error"))
        break
  }
  if(i == maxtry && inherits(g, "error"))
      stop(gettextf("sample_degseq() did not succeed in maxtry=%d iterations",
                    maxtry), domain=NA)
  ## otherwise we are done
  simplify(g)
}


geoDAG <- function(n, r, dim, geo=TRUE, DAG, weighted,
                   wFUN = list(runif, min=0.1, max=1))
{
  stopifnot((n <- as.integer(n)) >= 2)
  points.dim <- matrix(runif(n*dim), dim, n)

  Q <- weights <- matrix(0, n, n)
  for(i in 1:(n-1)) {
    for(j in (i+1):n) {
      v <- points.dim[, i]-points.dim[, j]
      v <- v^2
      v <- sum(v)
      d <- sqrt(v)
      Q[i, j] <- d<=r

      c <- d/r
      c <- 1-c
      weights[i, j] <- (c*(1-0.1)+0.1)*Q[i, j]
    }
  }

  if(weighted) {
    if(geo) {
      Q <- weights
    } else {
      nrEdge <- sum(Q)
      Q[Q==1] <- do.call(wFUN[[1]], c(nrEdge, wFUN[-1]))
    }
  }

  if(!DAG) Q <- Q+t(Q)

  perm <- sample.int(n)
  Q <- Q[perm, perm]
  colnames(Q) <- rownames(Q) <- 1:n
  m2g(Q)
}


erDAG <- function(n, p)
{
  Q <- upper.tri(matrix(NA, n, n))
  Q[Q] <- rbinom((n-1)*n/2, 1, p)
  Q
}

generalHarmonic <- function(n, r) sum(1/(seq_len(n)^r))

findGamma <- function(n, d) {
  n1 <- n-1L
  uniroot(function(r) generalHarmonic(n1, r) / generalHarmonic(n1, r+1) - d,
          c(-10, 10))$root +1
}

## ##################################################
## ## unifDAG
## ##################################################
## ## A, B, a, sum, r, t: bigz

## unifDAG <- function(n, weighted=FALSE, wFUN=list(runif, min=0.1, max=1)) {
##   stopifnot(n>1)
##   if (n > 100) stop("Use unifDAG only for n <= 100; for larger n use unifDAG.approx")

##   ## step 1
##   ## calculate numbers a_{n, k}, b_{n, k} and a_n up to N ##################
##   ## is done offline #####################################


##   ## step 2
##   ## sample an integer between 1 and a_n ##########################
##   r <- sampleZ2(.unifDagPreComp$a[n])

##   ## step 3
##   ## find vector K=c(k_1, ..., k_I) ##############################
##   K <- findK.exact(n, r)

##   ## step 4
##   ## construct DAG (matrix Q) recursively ###########################
##   Q <- sampleQ(n, K)

##   if(weighted) {
##     nrEdge <- sum(Q)
##     if(!is.list(wFUN)) {wFUN <- list(wFUN)}
##     Q[Q==1] <- do.call(wFUN[[1]], c(nrEdge, wFUN[-1]))
##   }

##   ## step 5
##   ## permute matrix Q and convert to DAG #############################
##   perm <- sample.int(n)
##   as(Q[perm, perm], "graphNEL")

## }


## ## find vector K=c(k_1, ..., k_I) ##############################
## findK.exact <- function(n, r)
## {
##   K <- rep(0, n) # vector of k_1, ..., k_I
##   k <- 1
##   while(r>.unifDagPreComp$A[n, k]) {
##     r <- r - .unifDagPreComp$A[n, k]
##     k <- k+1
##   }
##   i <- 1
##   K[i] <- k
##   r <- as.bigz(as.bigq(r, chooseZ(n, k)))+1      #+1: should round to ceil
##   m <- n-k
##   while(m>0) {
##     s <- 1
##     t <- (2^k-1)^s * 2^as.bigz(k*(m-s)) * .unifDagPreComp$A[m, s]
##     while(r>t) {
##       r <- r-t
##       s <- s+1
##       if(m>=s) {t <- (2^k-1)^as.bigz(s) * 2^as.bigz(k*(m-s)) * .unifDagPreComp$A[m, s]}
##       else {t <- r+1}
##     }
##     if(m>=s) {
##       rn.z <- chooseZ(m, s) * (2^k-1)^as.bigz(s) * 2^as.bigz(k*(m-s))
##       r.q <-  as.bigq(r, rn.z)
##       r <- as.bigz(r.q)  + 1
##       nn <- m
##       k <- s
##       m <- nn-k
##       i <- i+1
##       K[i] <- k}
##     else {
##       nn <- m
##       k <- min(s, m)
##       m <- nn-k
##       i <- i+1
##       K[i] <- k

##     }
##   }
##   ## I <- i

##   K[K!=0]
## }

## ##' @title Sample Uniformly a Large (bigz) Integer
## ##' @param n a bigz (large) integer
## ##' @return a random large integer (class \code{"bigz"}) <= n
## sampleZ2 <- function(n) {
## ### numbits <- as.integer(log2(n))+1
##   numbits <- as.integer(log2(n-1))+1L
##   repeat {
##     r.bit <- rbinom(numbits, 1, prob=1/2) # from {0, 1}
##     r <- as.bigz(paste0("0b", paste0(r.bit, collapse="")))
##     if (r < n)
##         return(r + 1)
##   }
## }


## ##################################################
## ## unifDAG.approx
## ##################################################
## unifDAG.approx <- function(n, n.exact = 20, weighted=FALSE,
##                            wFUN=list(runif, min=0.1, max=1)) {
##   stopifnot(n>1)
##   if (n < n.exact) stop("unifDAG.approx: n needs to be at least as big as n.exact!")

##   ## step 1&2
##   ## calculate numbers a_{n, k}, b_{n, k} and a_n up to N ##################
##   ## calculate numbers A_k, B_{s|k} up to N.inf and accuracy #################
##   ## is done offline #####################################

##   ## step 3
##   ## find approx-vector K=c(k_1, ..., k_I) #########################
##   K <- findK.approx(n, n.exact)

##   ## step 4
##   ## construct DAG (matrix Q) recursively ###########################
##   Q <- sampleQ(n, K)

##   if(weighted) {
##     nrEdge <- sum(Q)
##     if(!is.list(wFUN)) {wFUN <- list(wFUN)}
##     Q[Q==1] <- do.call(wFUN[[1]], c(nrEdge, wFUN[-1]))
##   }

##   ## step 5
##   ## permute matrix Q and convert to DAG #############################
##   perm <- sample.int(n)
##   as(Q[perm, perm], "graphNEL")

## }

## ## find vector K=c(k_1, ..., k_I) ##############################
## findK.approx <- function(n, n.exact)
## {
##   M <- n
##   K1 <- rep(0, n-n.exact)
##   i <- 1
##   K1[i]  <- sampleZ.cum.vec(.unifDagPreComp$Ak)
##   M <- M-K1[i]
##   i <- i+1
##   while(M>n.exact) {
##     K1[i] <- sampleZ.cum.vec(.unifDagPreComp$Bsk[, K1[i-1]])
##     M <- M-K1[i]
##     i <- i+1
##   }
##   if(M<n.exact) {
##     M <- M+K1[i-1]
##     K1[i-1] <- 0
##   }
##   K1 <- K1[K1!=0]

##   K2 <- if(n.exact>=1) {
##     ## direct enumeration method with n.exact
##     r <- sampleZ2(.unifDagPreComp$a[M])
##     findK.exact(M, r)
##   }
##   else
##     0

##   K <- c(K1, K2)
##   K[K!=0]
## }

## sampleZ.cum.vec <- function(c) {
##   ## c:: bigz-vector; c[i]=numbers of occurance of item i, returns random index, proportional to the numbers in c
##   ind <- which(c!=0)
##   s <- cumsum(c[ind])
##   n <- length(ind)
##   r <- sampleZ2(s[n])-1    ## since we want in [1:s[n]]
##   ## linear search, since only small c is expected
##   i <- 1
##   while(s[i]<=r) {
##     i <- i+1
##   }
##   ind[i]
## }

## ##################################################
## ## Precompute data:
## ## List unifDagPreComp with elements
## ## Notation according to: Uniform random generation of large acyclic digraphs
## ## - A: a_{n, k}
## ## - B: b_{n, k}
## ## - a: a_n
## ## - Ak: A_k
## ## - Bsk: B_{s|k}
## ##################################################
## if (FALSE) {
##     library(gmp)
##     setwd("/u/kalischm/research/packages/pcalg/pkg/R")
##     source("genRandDAG.R")

##     ## Exact --------------------------------
##     resExact <- generate.tables(100)
##     ##          ---------------
##     ## check :
##     c1.file <- "/u/kalischm/research/packages/unifDAGs/tables100.RData"
##     if(file.exists(c1.file)) {
##         load(c1.file)
##         stopifnot(identical(resExact[[1]], A),
##                   identical(resExact[[2]], B),
##                   identical(resExact[[3]], a))
##     }

##     ## Approx --------------------------------
##     resApprox <- approxK(N.inf=100, accuracy=20, A = resExact[["A"]], a = resExact[["a"]])
##     ##           -------
##     ## check :
##     c2.file <- "/u/kalischm/research/packages/unifDAGs/tables_approx100_20.RData"
##     if(file.exists(c2.file)) {
##         load(c2.file)
##         stopifnot(identical(resApprox[[1]], Ak),
##                   identical(resApprox[[2]], Bsk))
##     }
##     ##---- The "precomputed data base" we use ------------------------------

##     .unifDagPreComp <- c(resExact, resApprox)
##     ##^^^^^^^^^^^^^
##     save(.unifDagPreComp,
##          file = "/u/kalischm/research/packages/pcalg/pkg/sysdata.rda")
## }

## ## calculate numbers a_{n, k}, b_{n, k} and a_n up to N ##################
## ## can be done offline ###################################
## generate.tables <- function(N, verbose=TRUE)
## {
##   z0 <- as.bigz(0)
##   A <- matrix(z0, N, N) # a_{n, k}
##   B <- matrix(z0, N, N) # b_{n, k}
##   a <- rep(z0, N)       # a_n

##   A[1, 1] <- B[1, 1] <- a[1] <- 1
##   for(nn in 2:N) {
##     if(verbose) cat(sprintf(" N=%4d / K :", nn))
##     for(k in seq_len(nn-1L)) {
##       if(verbose) cat(" ", k)
##       s <- seq_len(nn-k)
##       sum.s <- sum((2^k-1)^as.bigz(s) * 2^as.bigz(k*(nn-k-s)) * A[nn-k, s])
##       B[nn, k] <- sum.s
##       A[nn, k] <- chooseZ(nn, k) * B[nn, k]
##     }
##     if(verbose) cat("\n")
##     A[nn, nn] <- B[nn, nn] <- 1
##     a[nn] <- sum(A[nn, 1:nn])
##   }

##   ## save(A, B, a, file=paste0(dir, "/tables", N, ".RData"))
##   ## cat("\nTables saved in: ", paste0(dir, "/tables", N, ".RData"))
##   list(A=A, B=B, a=a)
## }

## ### Construct A_k and B_{s|k} ===================================================

## ## using  *rational*  arithmetic ("bigq")  "internally" :


## approx.Ak <- function(N.inf=100, accuracy=20, A, a) {
##   ## Compute  A_k := lim_{n->oo} A_{n, k} / a_n  replacing oo ('Inf') by 'N.inf'

##   ## round( 10^acc * A_N / a_N ) :
##   Ak <- as.bigz(10^as.bigz(accuracy) * as.vector(A[N.inf,]) / as.vector(a[N.inf]))
##   ## typically reducing from 100 to only 10 non-0 ones :
##   Ak[Ak != 0]
## }

## approx.Bsk <- function(Ak) {
##   n.k <- length(Ak)
##   Bsk <- matrix(as.bigz(0), n.k, n.k)
##   for(kk in 1:n.k) {
##     ss <- 1:n.k
##     ## bug in 'gmp' package: this does nothing !!
##     ## Bsk[, kk] <- as.bigz(as.bigq((1-1/(2^kk))^ss) * as.bigq(Ak))
##     ##
##     ## workaround:
##     Bskk <- as.bigz(as.bigq((1-1/(2^kk))^ss) * as.bigq(Ak))
##     for(s in ss) Bsk[s,kk] <- Bskk[s]
##   }
##   Bsk
## }


## ## Need  (A, a) from the exact tables
## approxK <- function(N.inf=100, accuracy=20, A, a) {
##   Ak <- approx.Ak(N.inf, accuracy, A=A, a=a)
##   list(Ak = Ak,
##        Bsk= approx.Bsk(Ak))
## }


## ## augment a_{n, k}, b_{n, k} and a_n up form N0 to N ####################
## ## can be done offline ###################################
## ## augment.tables <- function(A0, B0, a0, N0, N, dir=getwd(), verbose=FALSE) {
## ##   A <- as.bigz(matrix(0, N, N))  # a_{n, k}
## ##   B <- as.bigz(matrix(0, N, N))  # b_{n, k}
## ##   a <- as.bigz(rep(0, N))       # a_n
## ##   A[1:N0, 1:N0] <- A0[1:N0, 1:N0]
## ##   B[1:N0, 1:N0] <- B0[1:N0, 1:N0]
## ##   a[1:N0] <- a0[1:N0]
## ##
## ##   for(nn in ((N0+1):N)) {
## ##     if(verbose) cat("\n N: ", nn, " K: ")
## ##     for(k in 1:(nn-1)) {
## ##       if(verbose) cat(" ", k)
## ##       sum <- as.bigz(0)
## ##       for(s in 1:(nn-k)) {
## ##         sum <- sum + (2^k-1)^as.bigz(s) * 2^as.bigz(k*(nn-k-s)) * A[nn-k, s]
## ##       }
## ##       B[nn, k] <-  sum
## ##       A[nn, k] <- chooseZ(nn, k)*B[nn, k]
## ##     }
## ##     A[nn, nn] <- B[nn, nn] <- 1
## ##     a[nn] <- sum(A[nn, 1:nn])
## ##   }
## ##
## ##   save(A, B, a, file=paste0(dir, "/tables", N, ".RData"))
## ##   cat("\nAugmented Tables saved in: ", paste0(dir, "/tables", N, ".RData"))
## ##   list(A, B, a)
## ## }

Try the pcalg package in your browser

Any scripts or data that you put into this service are public.

pcalg documentation built on May 29, 2024, 5:24 a.m.