Nothing
#' Bootstrap
#'
#' \code{bootstrap.pml} performs (non-parametric) bootstrap analysis and
#' \code{bootstrap.phyDat} produces a list of bootstrapped data sets.
#' \code{plotBS} plots a phylogenetic tree with the bootstrap values assigned
#' to the (internal) edges.
#'
#' It is possible that the bootstrap is performed in parallel, with help of the
#' multicore package. Unfortunately the multicore package does not work under
#' windows or with GUI interfaces ("aqua" on a mac). However it will speed up
#' nicely from the command line ("X11").
#'
#' @param x an object of class \code{pml} or \code{phyDat}.
#' @param bs number of bootstrap samples.
#' @param trees return trees only (default) or whole \code{pml} objects.
#' @param multicore logical, whether models should estimated in parallel.
#' @param mc.cores The number of cores to use during bootstrap. Only supported
#' on UNIX-alike systems.
#' @param jumble logical, jumble the order of the sequences.
#' @param tip.dates A named vector of sampling times associated to the
#' tips/sequences. Leave empty if not estimating tip dated phylogenies.
#' @param \dots further parameters used by \code{optim.pml} or
#' \code{plot.phylo}.
#' @param FUN the function to estimate the trees.
#' @return \code{bootstrap.pml} returns an object of class \code{multi.phylo}
#' or a list where each element is an object of class \code{pml}. \code{plotBS}
#' returns silently a tree, i.e. an object of class \code{phylo} with the
#' bootstrap values as node labels. The argument \code{BStrees} is optional and
#' if not supplied the tree with labels supplied in the \code{node.label} slot.
#' @author Klaus Schliep \email{klaus.schliep@@gmail.com}
#' @seealso \code{\link{optim.pml}}, \code{\link{pml}},
#' \code{\link[ape]{plot.phylo}}, \code{\link{maxCladeCred}}
#' \code{\link[ape]{nodelabels}},\code{\link{consensusNet}} and
#' \code{\link{SOWH.test}} for parametric bootstrap
#' @references Felsenstein J. (1985) Confidence limits on phylogenies. An
#' approach using the bootstrap. \emph{Evolution} \bold{39}, 783--791
#'
#' Lemoine, F., Entfellner, J. B. D., Wilkinson, E., Correia, D., Felipe, M. D.,
#' De Oliveira, T., & Gascuel, O. (2018). Renewing Felsenstein’s phylogenetic
#' bootstrap in the era of big data. \emph{Nature}, \bold{556(7702)}, 452--456.
#'
#' Penny D. and Hendy M.D. (1985) Testing methods evolutionary tree
#' construction. \emph{Cladistics} \bold{1}, 266--278
#'
#' Penny D. and Hendy M.D. (1986) Estimating the reliability of evolutionary
#' trees. \emph{Molecular Biology and Evolution} \bold{3}, 403--417
#' @keywords cluster
#' @examples
#'
#' \dontrun{
#' data(Laurasiatherian)
#' dm <- dist.hamming(Laurasiatherian)
#' tree <- NJ(dm)
#' # NJ
#' set.seed(123)
#' NJtrees <- bootstrap.phyDat(Laurasiatherian,
#' FUN=function(x)NJ(dist.hamming(x)), bs=100)
#' treeNJ <- plotBS(tree, NJtrees, "phylogram")
#'
#' # Maximum likelihood
#' fit <- pml(tree, Laurasiatherian)
#' fit <- optim.pml(fit, rearrangement="NNI")
#' set.seed(123)
#' bs <- bootstrap.pml(fit, bs=100, optNni=TRUE)
#' treeBS <- plotBS(fit$tree,bs)
#'
#' # Maximum parsimony
#' treeMP <- pratchet(Laurasiatherian)
#' treeMP <- acctran(treeMP, Laurasiatherian)
#' set.seed(123)
#' BStrees <- bootstrap.phyDat(Laurasiatherian, pratchet, bs = 100)
#' treeMP <- plotBS(treeMP, BStrees, "phylogram")
#' add.scale.bar()
#'
#' # export tree with bootstrap values as node labels
#' # write.tree(treeBS)
#' }
#'
#' @rdname bootstrap.pml
#' @export
bootstrap.pml <- function(x, bs = 100, trees = TRUE, multicore = FALSE,
mc.cores = NULL, tip.dates=NULL, ...) {
if(.Platform$OS.type=="windows") multicore <- FALSE
if (multicore && is.null(mc.cores)) mc.cores <- min(detectCores()-1L, 4L)
if(multicore && mc.cores < 2L) multicore <- FALSE
if(is.rooted(x$tree)){
if(is.ultrametric(x$tree)) method <- "ultrametric"
else method <- "tipdated"
optRooted <- TRUE
}
else {
method <- "unrooted"
optRooted <- FALSE
}
extras <- match.call(expand.dots = FALSE)$...
rearr <- c("optNni", "rearrangement")
tmp <- pmatch(names(extras), rearr)
tmp <- tmp[!is.na(tmp)]
do_rearr <- FALSE
if(length(tmp)>0){
if(tmp==1){
do_rearr <- extras$optNni
if(is.name(do_rearr)) do_rearr <- as.logical(as.character(do_rearr))
}
if(tmp==2) do_rearr <- extras$rearrangement %in% c("NNI", "stochastic",
"ratchet")
}
is_ultrametric <- FALSE
tmp <- pmatch("optRooted", names(extras))
if(!is.na(tmp)){
is_ultrametric <- extras$optRooted
optRooted <- extras$optRooted
}
else if(optRooted) extras <- append(extras, list(optRooted=TRUE))
data <- x$data
weight <- attr(data, "weight")
v <- rep(seq_along(weight), weight)
ntips <- Ntip(x$tree)
BS <- vector("list", bs)
for (i in 1:bs) BS[[i]] <- tabulate(
sample(v, replace = TRUE),
length(weight)
)
pmlPar <- function(weights, fit, trees = TRUE, do_rearr, ...) {
data <- fit$data
tree <- fit$tree
ind <- which(weights > 0)
data <- getRows(data, ind)
attr(data, "weight") <- weights[ind]
fit <- update(fit, data = data)
if(do_rearr){
tree <- candidate_tree(data, method=method, bf=fit$bf, Q=fit$Q,
tip.dates = tip.dates)
fit <- update(fit, tree = tree)
}
# fit <- optim.pml(fit, ...)
fit <- do.call(optim.pml, append(list(object=fit), extras))
if (trees) {
tree <- fit$tree
return(tree)
}
attr(fit, "data") <- NULL
fit
}
eval.success <- FALSE
if(method=="tipdated") do_rearr <- FALSE
if (!eval.success & multicore) {
res <- mclapply(BS, pmlPar, x, trees = trees, do_rearr = do_rearr, ...,
mc.cores = mc.cores)
eval.success <- TRUE
}
if (!eval.success) res <- lapply(BS, pmlPar, x, trees = trees,
do_rearr = do_rearr, ...)
if (trees) {
class(res) <- "multiPhylo"
res <- .compressTipLabel(res) # save memory
}
res
}
#' @rdname bootstrap.pml
#' @export
bootstrap.phyDat <- function(x, FUN, bs = 100, multicore = FALSE,
mc.cores = NULL, jumble = TRUE, ...) {
if(.Platform$OS.type=="windows") multicore <- FALSE
if (multicore && is.null(mc.cores)) mc.cores <- detectCores()
weight <- attr(x, "weight")
v <- rep(seq_along(weight), weight)
BS <- vector("list", bs)
for (i in 1:bs) BS[[i]] <- tabulate(sample(v, replace = TRUE), length(weight))
if (jumble) {
J <- vector("list", bs)
l <- length(x)
for (i in 1:bs) J[[i]] <- list(BS[[i]], sample(l))
}
fitPar <- function(weights, data, ...) {
ind <- which(weights > 0)
data <- getRows(data, ind)
attr(data, "weight") <- weights[ind]
FUN(data, ...)
}
fitParJumble <- function(J, data, ...) {
ind <- which(J[[1]] > 0)
data <- getRows(data, ind)
attr(data, "weight") <- J[[1]][ind]
data <- subset(data, J[[2]])
FUN(data, ...)
}
if (multicore) {
if (jumble) {
res <- mclapply(J, fitParJumble, x, ..., mc.cores = mc.cores)
} else {
res <- mclapply(BS, fitPar, x, ..., mc.cores = mc.cores)
}
}
else {
if (jumble) {
res <- lapply(J, fitParJumble, x, ...)
} else {
res <- lapply(BS, fitPar, x, ...)
}
}
if (inherits(res[[1]], "phylo")) {
class(res) <- "multiPhylo"
res <- .compressTipLabel(res) # save memory
}
res
}
checkLabels <- function(tree, tip) {
ind <- match(tree$tip.label, tip)
if (any(is.na(ind)) | length(tree$tip.label) != length(tip)) {
stop("tree has different labels")
}
tree$tip.label <- tip #tree$tip.label[ind]
ind2 <- tree$edge[, 2] <= Ntip(tree)
tree$edge[ind2, 2] <- ind[tree$edge[ind2, 2]]
tree
}
cladeMatrix <- function(x, rooted = FALSE) {
if (!rooted) x <- unroot(x)
pp <- prop.part(x)
pplabel <- attr(pp, "labels")
if (!rooted) pp <- SHORTwise(pp)
x <- .uncompressTipLabel(x)
nnodes <- Nnode(x)
class(x) <- NULL
# nnodes <- sapply(x, Nnode)
l <- length(x)
from <- cumsum(c(1, nnodes[-l]))
to <- cumsum(nnodes)
ivec <- integer(to[l])
pvec <- c(0, to)
res <- vector("list", l)
k <- 1
for (i in 1:l) {
ppi <- prop.part(x[[i]])
if (!rooted) ppi <- SHORTwise(ppi)
indi <- sort(fmatch(ppi, pp))
ivec[from[i]:to[i]] <- indi
}
X <- sparseMatrix(i = ivec, p = pvec, dims = c(length(pp), l))
list(X = X, prop.part = pp)
}
moving_average <- function(obj, window = 50) {
fun <- function(x) {
cx <- c(0, cumsum(x))
(cx[(window + 1):length(cx)] - cx[1:(length(cx) - window)]) / (window)
}
res <- apply(obj$X, 1, fun)
rownames(res) <- c()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.