Nothing
## ----setup, echo=FALSE, message=FALSE, warning=FALSE--------------------------
require(phylter)
require(ape)
## ---- eval = FALSE------------------------------------------------------------
# install.packages("remotes")
## ---- eval = FALSE------------------------------------------------------------
# remotes::install_github("damiendevienne/phylter")
## ---- eval = FALSE------------------------------------------------------------
# library("phylter")
## ---- eval = FALSE------------------------------------------------------------
# if (!requireNamespace("ape", quietly = TRUE))
# install.packages("ape")
# trees <- ape::read.tree("treefile.tre")
## ---- eval = FALSE------------------------------------------------------------
# results <- phylter(trees, gene.names = names)
## ---- eval = FALSE------------------------------------------------------------
# phylter(X, bvalue = 0, distance = "patristic", k = 3, k2 = k, Norm = "median",
# Norm.cutoff = 0.001, gene.names = NULL, test.island = TRUE,
# verbose = TRUE, stop.criteria = 1e-5, InitialOnly = FALSE,
# normalizeby = "row", parallel = TRUE)
## ---- eval = FALSE------------------------------------------------------------
# results$Final$Outliers
## ---- eval = FALSE------------------------------------------------------------
# # Get a summary: nb of outliers, gain in concordance, etc.
# summary(results)
#
# # Show the number of species in each gene, and how many per gene are outliers
# plot(results, "genes")
#
# # Show the number of genes where each species is found, and how many are outliers
# plot(results, "species")
#
# # Compare before and after genes $\times$ species matrices, highlighting missing data and outliers
# # identified (not efficient for large datasets)
# plot2WR(results)
#
# # Plot the dispersion of data before and after outlier removal. One dot represents one
# # gene $\times$ species association
# plotDispersion(results)
#
# # Plot the genes $\times$ genes matrix showing pairwise correlation between genes
# plotRV(results)
#
# # Plot optimization scores during optimization
# plotopti(results)
## ---- eval = FALSE------------------------------------------------------------
# write.phylter(results, file = "phylter.out")
## ---- results='hide'----------------------------------------------------------
data(carnivora, package = "phylter")
results <- phylter(carnivora, parallel = FALSE) # for example
## -----------------------------------------------------------------------------
summary(results)
## -----------------------------------------------------------------------------
results$Initial
results$Final
## -----------------------------------------------------------------------------
results$Final$Outliers
## ---- eval = FALSE------------------------------------------------------------
# write.phylter(results)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.