R/FARAO.R

Defines functions FARAO2 getdAdE OPTfunEB OPTfun FARAO

Documented in FARAO FARAO2

#' FARquhar And Opti
#' @description The numerical solution of the optimal stomatal conductance model, coupled with 
#' the Farquhar model of photosynthesis. The model of Medlyn et al. (2011) is an approximation 
#' to this full numeric solution.
#' @param lambda The marginal cost of water (mol mol-1)
#' @param Ca The CO2 concentration. 
#' @param VPD Vapor pressure deficit (kPa)
#' @param photo Which photosynthesis rate should stomata respond to? Defaults to 'BOTH', i.e. 
#' the minimum of Vcmax and Jmax limited rates.
#' @param energybalance If TRUE (Default = FALSE), calculates leaf temperature from energy balance 
#' (and its effects on photosynthesis as well as leaf transpiration), using \code{\link{PhotosynEB}}.
#' @param C4 If TRUE, uses the C4 photosynthesis routine (\code{\link{AciC4}})
#' @param Tair Air temperature (deg C)
#' @param Wind Wind speed (m s-1) (only used if energybalance=TRUE)
#' @param Wleaf Leaf width (m) (only used if energybalance=TRUE)
#' @param StomatalRatio The stomatal ratio (see \code{\link{PhotosynEB}}) (only used if 
#' energybalance=TRUE)
#' @param LeafAbs Leaf absorptance (see \code{\link{PhotosynEB}}) (only used if 
#' energybalance=TRUE)
#' @param ... All other parameters are passed to \code{\link{Aci}}
#' @author Remko Duursma
#' @details This model finds the Ci that maximizes A - lambda*E (Cowan & Farquhar 1977,
#'  see also Medlyn et al. 2011). The new function FARAO2 is a much simpler (and probably 
#'  more stable) implementation, based on Buckley et al. 2014 (P,C&E). Both functions 
#'  are provided, as FARAO has a few more options than FARAO2, at the moment.
#' @references 
#' Buckley, T.N., Martorell, S., Diaz-Espejo, A., Tomas, M., Medrano, H., 2014. Is stomatal 
#' conductance optimized over both time and space in plant crowns? A field test in 
#' grapevine (Vitis vinifera). Plant Cell Environ doi:10.1111/pce.12343
#' 
#' Cowan, I. and G.D. Farquhar. 1977. Stomatal function in relation to leaf metabolism 
#' and environment. Symposia of the Society for Experimental Biology. 31:471-505.
#' 
#' Medlyn, B.E., R.A. Duursma, D. Eamus, D.S. Ellsworth, I.C. Prentice, C.V.M. Barton, 
#' K.Y. Crous, P. De Angelis, M. Freeman and L. Wingate. 2011. Reconciling the optimal 
#' and empirical approaches to modelling stomatal conductance. Global Change Biology. 17:2134-2144.
#' @export
#' @importFrom stats optimize
#' @rdname FARAO
FARAO <- function(lambda=0.002, Ca=400, VPD=1, 
                  photo=c("BOTH","VCMAX","JMAX"), 
                  energybalance=FALSE, 
                  C4=FALSE,                   
                  Tair=25,
                  Wind=2,
                  Wleaf=0.02,
                  StomatalRatio=1,
                  LeafAbs=0.86,
                  ...){
  
  photo <- match.arg(photo)
  
  # Non-vectorized form.
  FARAOfun <- function(lambda, Ca, VPD, 
                       photo, 
                       energybalance, C4,                   
                       Tair,
                       Wind,
                       Wleaf,
                       StomatalRatio,
                       LeafAbs,
                       ...){
    
  
    if(!energybalance){
      fx <- function(Ca,...)optimize(OPTfun, interval=c(0,Ca), 
                                     maximum=TRUE,Ca=Ca,
                                     ...)$maximum
      optimalcis <- mapply(fx,Ca=Ca,lambda=lambda, photo=photo, C4=C4, VPD=VPD,...)
      
      res <- as.data.frame(OPTfun(Ci=optimalcis, retobjfun=FALSE, 
                                Ca=Ca, photo=photo, C4=C4, VPD=VPD,...))
    } else {
      fx <- function(Ca,...)optimize(OPTfunEB, interval=c(0,Ca), 
                                     maximum=TRUE,Ca=Ca,
                                     ...)$maximum
      optimalcis <- mapply(fx,Ca=Ca,lambda=lambda, photo=photo, C4=C4, VPD=VPD,
                           Tair=Tair,
                           Wind=Wind,
                           Wleaf=Wleaf,
                           StomatalRatio=StomatalRatio,
                           LeafAbs=LeafAbs,
                           ...)
      
      res <- as.data.frame(OPTfunEB(Ci=optimalcis, retobjfun=FALSE, 
                                  Ca=Ca, photo=photo, C4=C4, VPD=VPD,
                                  Tair=Tair,
                                  Wind=Wind,
                                  Wleaf=Wleaf,
                                  StomatalRatio=StomatalRatio,
                                  LeafAbs=LeafAbs,...))
    }
    
    return(res)
  }
  
  f <- t(mapply(FARAOfun, lambda=lambda, Ca=Ca, VPD=VPD, 
              photo=photo, 
              energybalance=energybalance, C4=C4,
              Tair=Tair,
              Wind=Wind,
              Wleaf=Wleaf,
              StomatalRatio=StomatalRatio,
              LeafAbs=LeafAbs, ..., SIMPLIFY=FALSE))
  
return(as.data.frame(do.call(rbind,f)))

}

# This function returns the 'objective function' A - lambda*E
# This is to be optimized by the next function by varying ci.
OPTfun <- function(Ci,              # mu mol mol-1
                    lambda=0.002,   # mol mol-1
                    Ca=400,         # mu mol mol-1
                    VPD=1,        # kPa
					          Patm=101,         # ambient pressure, kPa
					          photo=c("BOTH","VCMAX","JMAX"),
                    energybalance=FALSE,
                    retobjfun=TRUE, # if false, returns A, g and E (otherwise sum(A-lambda*E))
					          C4=FALSE,
					          ...){     

  GCtoGW <- 1.57
	VPDmol <- VPD/Patm
	
	photo <- match.arg(photo)
	
  # Given a Ci, calculate photosynthetic rate
  if(!C4)
    # note that VPD does not do anything, just for consistency in I/O
		run <- Aci(Ci=Ci, VPD=VPD, ...)   
	else 
		run <- AciC4(Ci, VPD=VPD, ...)
	
  if(photo == "BOTH")A <- run$ALEAF
	if(photo == "VCMAX")A <- run$Ac
	if(photo == "JMAX")A <- run$Aj
  
  # Given Ci and A, calculate gs (diffusion constraint)
  gs <- GCtoGW * A / (Ca - Ci)
	    
  # Transpiration rate
  E <- gs*VPDmol
    
    
  # Objective function to be maximized (Cowan-Farquhar condition)
  objfun <- 10^-6*A - lambda*E

if(retobjfun)return(objfun)

if(!retobjfun)return(list( Ci=Ci, ALEAF=A, GS=gs, ELEAF=E*1000, Ac=run$Ac, Aj=run$Aj,
                           Rd=run$Rd, VPD=VPD, Tleaf=run$Tleaf,  Ca=Ca, PPFD=run$PPFD ))
}         


OPTfunEB <- function(Ci,           # mu mol mol-1
                   lambda=0.002,   # mol mol-1
                   Ca=400,         # mu mol mol-1
                   VPD=1.5,        # AIR VPD! kPa
                   Patm=101,       # ambient pressure, kPa
                   Tair=25,
                   Wind=2,
                   Wleaf=0.02,
                   StomatalRatio=1,
                   LeafAbs=0.86,
                   photo=c("BOTH","VCMAX","JMAX"),
                   retobjfun=TRUE, # if false, returns A, g and E (otherwise sum(A-lambda*E))
                   C4=FALSE,
                   ...){     
  
  GCtoGW <- 1.57
  VPDmol <- VPD/Patm
  
  photo <- match.arg(photo)
  
  gsfun <- function(Ci, VPD, returnwhat=c("gs","all"), ...){
    
    returnwhat <- match.arg(returnwhat)
    
    # Given a Ci, calculate photosynthetic rate
    if(!C4)
      # note that VPD does not do anything, just for consistency in I/O
      run <- Aci(Ci, VPD=VPD, ...)   
    else 
      run <- AciC4(Ci, VPD=VPD, ...)
    
    if(photo == "BOTH")A <- run$ALEAF
    if(photo == "VCMAX")A <- run$Ac
    if(photo == "JMAX")A <- run$Aj
    
    # Given Ci and A, calculate gs (diffusion constraint)
    gs <- GCtoGW * A / (Ca - Ci)
    
  if(returnwhat == "gs")return(gs)
  if(returnwhat == "all")return(list(run=run, GS=gs, A=A))
  }
  
  # Find Tleaf. Here, we take into account that Tleaf as solved from
  # energy balance affects gs (because it affects)
  fx <- function(x, Ci, Tair, Wind, VPD, Wleaf, StomatalRatio, LeafAbs, ...){
    newx <- FindTleaf(Tair=Tair, gs=gsfun(Ci=Ci, Tleaf=x, VPD=VPD, ...), 
                      Wind=Wind, Wleaf=Wleaf, 
                      StomatalRatio=StomatalRatio, LeafAbs=LeafAbs)
    (newx - x)^2
  }

  Tleaf <- optimize(fx, interval=c(Tair-10, Tair+10), Ci=Ci, Tair=Tair, 
                    Wind=Wind, VPD=VPD, Wleaf=Wleaf, 
                   StomatalRatio=StomatalRatio, LeafAbs=LeafAbs, ...)$minimum
  
  z <- gsfun(Ci=Ci, Tleaf=Tleaf, VPD=VPD, returnwhat="all",...)
  GS <- z$GS
  A <- z$A
  
  # And energy balance components
  e <- LeafEnergyBalance(Tleaf=Tleaf, Tair=Tair, gs=GS, 
                         PPFD=z$run$PPFD, VPD=VPD, Patm=z$run$Patm, 
                         Wind=Wind, Wleaf=Wleaf, 
                         StomatalRatio=StomatalRatio, LeafAbs=LeafAbs,
                         returnwhat="fluxes")

  E <- e$ELEAFeb
  
  # Objective function to be maximized (Cowan-Farquhar)
  objfun <- 10^-6*A - lambda*E/1000
  
  if(retobjfun)return(objfun)
  
  if(!retobjfun)return(list( Ci=Ci, ALEAF=A, GS=GS, ELEAF=E, Ac=z$run$Ac, Aj=z$run$Aj,
                             Rd=z$run$Rd, VPD=VPD, Tleaf=Tleaf,  Ca=Ca, PPFD=z$run$PPFD ))
}  


getdAdE <- function(Ci,...,energybalance=FALSE,
                       returnwhat=c("dAdE","both")){
  
  returnwhat <- match.arg(returnwhat)
  delta <- 1e-03
  
  if(energybalance){
    r1 <- PhotosynEB(Ci=Ci, ...)
    r2 <- PhotosynEB(Ci=Ci+delta, ...)
  } else {
    r1 <- Photosyn(Ci=Ci, ...)
    r2 <- Photosyn(Ci=Ci+delta, ...)
  }
    
  dA <- r2$ALEAF - r1$ALEAF
  dE <- r2$ELEAF - r1$ELEAF
  
  if(returnwhat == "dAdE")
    return(dA/dE)
  else
    return(c(dA=dA, dE=dE))
  
}

#' @rdname FARAO
#' @export
FARAO2 <- function(lambda=0.002, Ca=400, energybalance=FALSE, ...){
  
  
  faraofun <- function(lambda,Ca,energybalance,...){
    f <- function(x, ...)(getdAdE(x, energybalance=energybalance, ...) - lambda*1000)^2
    
    CI <- try(optimize(f, c(80, Ca-0.1), ...)$minimum)
    if(inherits(CI, "try-error"))return(NULL)
    
    if(energybalance)
      p <- PhotosynEB(Ci=CI, ...)
    else
      p <- Photosyn(Ci=CI, ...)
  
  return(p)
  }
  
  m <- mapply(faraofun, lambda=lambda, Ca=Ca, 
              energybalance=energybalance, ..., SIMPLIFY=FALSE)
  
return(do.call(rbind, m))
}

Try the plantecophys package in your browser

Any scripts or data that you put into this service are public.

plantecophys documentation built on April 1, 2021, 1:06 a.m.