Nothing
#' Estimation of the error components
#'
#' This function enables the estimation of the variance components of a panel
#' model.
#'
#'
#' @aliases ercomp
#' @param object a `formula` or a `plm` object,
#' @param data a `data.frame`,
#' @param effect the effects introduced in the model, see [plm()] for
#' details,
#' @param method method of estimation for the variance components, see
#' [plm()] for details,
#' @param models the models used to estimate the variance components
#' (an alternative to the previous argument),
#' @param dfcor a numeric vector of length 2 indicating which degree
#' of freedom should be used,
#' @param index the indexes,
#' @param x an `ercomp` object,
#' @param digits digits,
#' @param \dots further arguments.
#' @return An object of class `"ercomp"`: a list containing \itemize{
#' \item `sigma2` a named numeric with estimates of the variance
#' components, \item `theta` contains the parameter(s) used for
#' the transformation of the variables: For a one-way model, a
#' numeric corresponding to the selected effect (individual or
#' time); for a two-ways model a list of length 3 with the
#' parameters. In case of a balanced model, the numeric has length
#' 1 while for an unbalanced model, the numerics' length equal the
#' number of observations. }
#' @export
#' @author Yves Croissant
#' @seealso [plm()] where the estimates of the variance components are
#' used if a random effects model is estimated
#' @references
#'
#' \insertRef{AMEM:71}{plm}
#'
#' \insertRef{NERLO:71}{plm}
#'
#' \insertRef{SWAM:AROR:72}{plm}
#'
#' \insertRef{WALL:HUSS:69}{plm}
#'
#' @keywords regression
#' @examples
#'
#' data("Produc", package = "plm")
#' # an example of the formula method
#' ercomp(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc,
#' method = "walhus", effect = "time")
#' # same with the plm method
#' z <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
#' data = Produc, random.method = "walhus",
#' effect = "time", model = "random")
#' ercomp(z)
#' # a two-ways model
#' ercomp(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc,
#' method = "amemiya", effect = "twoways")
#'
ercomp <- function(object, ...){
UseMethod("ercomp")
}
#' @rdname ercomp
#' @export
ercomp.plm <- function(object, ...){
model <- describe(object, "model")
if (model != "random") stop("ercomp only relevant for random models")
object$ercomp
}
#' @rdname ercomp
#' @export
ercomp.pdata.frame <- function(object, effect = c("individual", "time", "twoways", "nested"),
method = NULL,
models = NULL,
dfcor = NULL,
index = NULL, ...){
data <- object
object <- attr(data, "formula")
ercomp(object, data, effect = effect, method = method, models = models, dfcor = dfcor, index = index, ...)
}
#' @rdname ercomp
#' @export
ercomp.formula <- function(object, data,
effect = c("individual", "time", "twoways", "nested"),
method = NULL,
models = NULL,
dfcor = NULL,
index = NULL, ...){
effect <- match.arg(effect)
if (! inherits(object, "Formula")) object <- as.Formula(object)
# if the data argument is not a pdata.frame, create it using plm
if (! inherits(data, "pdata.frame"))
data <- plm(object, data, model = NA, index = index)
if(is.null(attr(data, "terms"))) data <- model.frame(data, object)
# check whether the panel is balanced
balanced <- is.pbalanced(data)
# method and models arguments can't be both set
if (! is.null(method) && ! is.null(models))
stop("you can't use both, the 'method' and the 'models' arguments")
# method and models arguments aren't set, use swar
if (is.null(method) && is.null(models)) method <- "swar"
# dfcor is set, coerce it to a length 2 vector if necessary
if (! is.null(dfcor)){
if (length(dfcor) > 2L) stop("dfcor length should be at most 2")
if (length(dfcor) == 1L) dfcor <- rep(dfcor, 2L)
if (! balanced && any(dfcor != 3))
stop("dfcor should equal 3 for unbalanced panels")
}
# we use later a general expression for the three kinds of effects,
# select the relevant lines
therows <- switch(effect,
"individual" = 1:2,
"time" = c(1, 3),
"twoways" = 1:3)
if(! is.null(method) && method == "nerlove") {
## special case Nerlove estimator with early exit
if (effect == "nested") stop("nested random effect model not implemented for Nerlove's estimator")
est <- plm.fit(data, model = "within", effect = effect)
pdim <- pdim(data)
N <- pdim$nT$n
TS <- pdim$nT$T
O <- pdim$nT$N
NTS <- N * (effect != "time") + TS * (effect != "individual") - 1 * (effect == "twoways")
s2nu <- deviance(est) / O
# NB: Nerlove takes within residual sums of squares divided by #obs without df correction (Baltagi (2013), p. 23/45)
s2eta <- s2mu <- NULL
if(balanced) {
if (effect != "time")
s2eta <- as.numeric(crossprod(fixef(est, type = "dmean", effect = "individual"))) / (N - 1)
if (effect != "individual")
s2mu <- as.numeric(crossprod(fixef(est, type = "dmean", effect = "time"))) / (TS - 1)
sigma2 <- c(idios = s2nu, id = s2eta, time = s2mu)
theta <- list()
if (effect != "time") theta$id <- (1 - (1 + TS * sigma2["id"] / sigma2["idios"]) ^ (-0.5))
if (effect != "individual") theta$time <- (1 - (1 + N * sigma2["time"] / sigma2["idios"]) ^ (-0.5))
if (effect == "twoways") {
theta$total <- theta$id + theta$time - 1 +
(1 + N * sigma2["time"] / sigma2["idios"] +
TS * sigma2["id"] / sigma2["idios"]) ^ (-0.5)
names(theta$total) <- "total"
# tweak for numerical precision:
# if either theta$id or theta$time is 0 => theta$total must be zero
# but in calculation above some precision is lost, so force to zero
if( isTRUE(all.equal(sigma2[["time"]], 0, check.attributes = FALSE))
|| isTRUE(all.equal(sigma2[["id"]], 0, check.attributes = FALSE)))
theta$total <- 0
}
} else {
# Nerlove unbalanced as in Cottrell (2017), gretl working paper #4
# -> use weighting
# (albeit the formula for unbalanced panels reduces to original
# Nerlove formula for balanced data, we keep it separated)
if (effect != "time")
s2eta <- sum( (fixef(est, type = "dmean", effect = "individual"))^2 *
pdim$Tint$Ti / pdim$nT$N) * (pdim$nT$n/(pdim$nT$n-1))
if (effect != "individual")
s2mu <- sum( (fixef(est, type = "dmean", effect = "time"))^2 *
pdim$Tint$nt / pdim$nT$N) * (pdim$nT$T/(pdim$nT$T-1))
sigma2 <- c(idios = s2nu, id = s2eta, time = s2mu)
theta <- list()
# Tns, Nts: full length
xindex <- unclass(index(data)) # unclass for speed
ids <- xindex[[1L]]
tss <- xindex[[2L]]
Tns <- pdim$Tint$Ti[as.character(ids)]
Nts <- pdim$Tint$nt[as.character(tss)]
if (effect != "time") theta$id <- (1 - (1 + Tns * sigma2["id"] / sigma2["idios"]) ^ (-0.5))
if (effect != "individual") theta$time <- (1 - (1 + Nts * sigma2["time"] / sigma2["idios"]) ^ (-0.5))
if (effect == "twoways") {
theta$total <- theta$id + theta$time - 1 +
(1 + Nts * sigma2["time"] / sigma2["idios"] +
Tns * sigma2["id"] / sigma2["idios"]) ^ (-0.5)
names(theta$total) <- paste0(names(theta$id), "-", names(theta$time))
# tweak for numerical precision:
# if either theta$id or theta$time is 0 => theta$total must be zero
# but in calculation above some precision is lost, so force to zero
if( isTRUE(all.equal(sigma2[["time"]], 0, check.attributes = FALSE))
|| isTRUE(all.equal(sigma2[["id"]], 0, check.attributes = FALSE)))
theta$total <- 0
}
}
if (effect != "twoways") theta <- theta[[1L]]
result <- list(sigma2 = sigma2, theta = theta)
result <- structure(result, class = "ercomp", balanced = balanced, effect = effect)
return(result)
} ## end Nerlove case
if (! is.null(method) && method == "ht"){
## special case HT with early exit
pdim <- pdim(data)
N <- pdim$nT$n
TS <- pdim$nT$T
O <- pdim$nT$N
wm <- plm.fit(data, effect = "individual", model = "within")
X <- model.matrix(data, rhs = 1)
ixid <- unclass(index(data))[[1L]] # unclass for speed
charixid <- as.character(ixid)
constants <- apply(X, 2, function(x) all(tapply(x, ixid, is.constant)))
FES <- fixef(wm, type = "dmean")[charixid]
XCST <- X[ , constants, drop = FALSE]
ra <- if(length(object)[2L] > 1L){
# with instruments
W1 <- model.matrix(data, rhs = 2)
twosls(FES, XCST, W1, lm.type = "lm.fit")
} else{
# without instruments
lm.fit(XCST, FES)
}
s2nu <- deviance(wm) / (O - N)
s21 <- as.numeric(crossprod(ra$residuals)) / N # == deviance(ra) / N
s2eta <- (s21 - s2nu) / TS
sigma2 <- c(idios = s2nu, id = s2eta)
theta <- (1 - (1 + TS * sigma2["id"] / sigma2["idios"]) ^ (-0.5))
result <- list(sigma2 = sigma2, theta = theta)
result <- structure(result, class = "ercomp", balanced = balanced, effect = effect)
return(result)
} ## end HT
# 'method' argument is used, check its validity and set the relevant
# models and dfcor
if (! is.null(method)){
if (! method %in% c("swar", "walhus", "amemiya"))
stop(paste(method, "is not a relevant method"))
if (method == "swar") models <- c("within", "Between")
if (method == "walhus") models <- c("pooling", "pooling")
if (method == "amemiya") models <- c("within", "within")
if (is.null(dfcor)){
if (balanced){
dfcor <- switch(method,
"swar" = c(2L, 2L),
"walhus" = c(1L, 1L),
"amemiya" = c(1L, 1L))
}
else dfcor <- c(3L, 3L)
}
}
else{
# the between estimator is only relevant for the second
# quadratic form
if (models[1L] %in% c("Between", "between"))
stop("the between estimator is only relevant for the between quadratic form")
# if the argument is of length 2, duplicate the second value
if (length(models) == 2L) models <- c(models[1L], rep(models[2L], 2L))
# if the argument is of length 1, triple its value
if (length(models) == 1L) models <- c(rep(models, 3L))
# set one of the last two values to NA in the case of one way
# model
if (effect == "individual") models[3L] <- NA
if (effect == "time") models[2L] <- NA
# default value of dfcor 3,3
if (is.null(dfcor)) dfcor <- c(3L, 3L)
}
# The nested error component model
if (effect == "nested"){
xindex <- unclass(attr(data, "index")) # unclass for speed
if(length(xindex) < 3L) stop("the nested error component model requires three-indexed data.")
ids <- xindex[[1L]]
tss <- xindex[[2L]]
gps <- xindex[[3L]]
G <- length(unique(gps))
Z <- model.matrix(data, model = "pooling")
X <- model.matrix(data, model = "pooling", cstcovar.rm = "intercept")
y <- pmodel.response(data, model = "pooling", effect = "individual")
O <- nrow(Z)
K <- ncol(Z) - (ncol(Z) - ncol(X))
pdim <- pdim(data)
N <- pdim$nT$n
TS <- pdim$nT$T
TG <- unique(data.frame(tss, gps))
TG <- collapse::qtable(TG$gps)
NG <- unique(data.frame(ids, gps))
NG <- collapse::qtable(NG$gps)
Tn <- pdim$Tint$Ti
Nt <- pdim$Tint$nt
quad <- vector(length = 3L, mode = "numeric")
M <- matrix(NA_real_, nrow = 3L, ncol = 3L,
dimnames = list(c("w", "id", "gp"),
c("nu", "eta", "lambda")))
if (method == "walhus"){
estm <- plm.fit(data, model = "pooling", effect = "individual")
hateps <- resid(estm, model = "pooling")
Between.hateps.group <- Between(hateps, effect = "group")
quad <- c(crossprod(Within(hateps, effect = "individual")),
crossprod(Between(hateps, effect = "individual") - Between.hateps.group),
crossprod(Between.hateps.group))
ZSeta <- model.matrix(estm, model = "Sum", effect = "individual")
ZSlambda <- Sum(Z, effect = "group")
CPZM <- solve(crossprod(Z))
CPZSeta <- crossprod(ZSeta, Z)
CPZSlambda <- crossprod(ZSlambda, Z)
Between.Z.ind <- Between(Z, "individual")
Between.Z.group <- Between(Z, "group")
Between.Z.ind_minus_Between.Z.group <- Between.Z.ind - Between.Z.group
CPZW <- crossprod(Z - Between.Z.ind)
CPZBlambda <- crossprod(Between.Z.group)
CPZM.CPZW <- crossprod(CPZM, CPZW)
CPZM.CPZBlamda <- crossprod(CPZM, CPZBlambda)
CPZM.CPZSeta <- crossprod(CPZM, CPZSeta)
CPZM.CPZSlambda <- crossprod(CPZM, CPZSlambda)
CPZM.CPZW.CPZM.CPZSeta <- crossprod(t(CPZM.CPZW), CPZM.CPZSeta)
CPZM.CPZW.CPZM.CPZSlambda <- crossprod(t(CPZM.CPZW), CPZM.CPZSlambda)
CPZBetaBlambda <- crossprod(Between.Z.ind_minus_Between.Z.group)
CPZBetaBlambdaSeta <- crossprod(Between.Z.ind_minus_Between.Z.group, ZSeta)
CPZBlambdaSeta <- crossprod(Between.Z.group, ZSeta)
CPZM.CPZBetaBlambda <- crossprod(CPZM, CPZBetaBlambda)
CPZM.CPZBlambda <- crossprod(CPZM, CPZBlambda)
M["w", "nu"] <- O - N - trace(CPZM.CPZW)
M["w", "eta"] <- trace(CPZM.CPZW.CPZM.CPZSeta)
M["w", "lambda"] <- trace(CPZM.CPZW.CPZM.CPZSlambda)
M["id", "nu"] <- N - G - trace(CPZM.CPZBetaBlambda)
M["id", "eta"] <- O - sum(TG) - 2 * trace(crossprod(CPZM, CPZBetaBlambdaSeta)) +
trace(crossprod(t(CPZM.CPZBetaBlambda), CPZM.CPZSeta))
M["id", "lambda"] <- trace(crossprod(t(CPZM.CPZBetaBlambda), CPZM.CPZSlambda))
M["gp", "nu"] <- G - trace(CPZM.CPZBlambda)
M["gp", "eta"] <- sum(TG) - 2 * trace(crossprod(CPZM, CPZBlambdaSeta)) +
trace(crossprod(t(CPZM.CPZBlambda), CPZM.CPZSeta))
M["gp", "lambda"] <- O - 2 * trace(CPZM.CPZSlambda) +
trace(crossprod(t(CPZM.CPZBlambda), CPZM.CPZSlambda))
}
if (method == "amemiya"){
estm <- plm.fit(data, effect = "individual", model = "within")
hateps <- resid(estm, model = "pooling")
Betweeen.hateps.group <- Between(hateps, effect = "group")
XBlambda <- Between(X, "group")
quad <- c(crossprod(Within(hateps, effect = "individual")),
crossprod(Between(hateps, effect = "individual") - Betweeen.hateps.group),
crossprod(Betweeen.hateps.group))
WX <- model.matrix(estm, model = "within", effect = "individual", cstcovar.rm = "all")
XBetaBlambda <- Between(X, "individual") - XBlambda
XBlambda <- t(t(XBlambda) - colMeans(XBlambda))
CPXBlambda <- crossprod(XBlambda)
CPXM <- solve(crossprod(WX))
CPXBetaBlambda <- crossprod(XBetaBlambda)
K <- ncol(WX)
MK <- length(setdiff("(Intercept)", attr(WX, "constant"))) # Pas sur, a verifier
KW <- ncol(WX)
M["w", "nu"] <- O - N - K + MK
M["w", "eta"] <- 0
M["w", "lambda"] <- 0
M["id", "nu"] <- N - G + trace(crossprod(CPXM, CPXBetaBlambda))
M["id", "eta"] <- O - sum(TG)
M["id", "lambda"] <- 0
M["gp", "nu"] <- G - 1 + trace(crossprod(CPXM, CPXBlambda))
M["gp", "eta"] <- sum(TG) - sum(NG * TG ^ 2) / O
M["gp", "lambda"] <- O - sum(NG ^ 2 * TG ^ 2) / O
}
if (method == "swar"){
yBetaBlambda <- pmodel.response(data, model = "Between", effect = "individual") -
pmodel.response(data, model = "Between", effect = "group")
ZBlambda <- Between(Z, "group")
CPZBlambda.solve <- solve(crossprod(ZBlambda))
ZBetaBlambda <- Between(Z, "individual") - ZBlambda
XBetaBlambda <- Between(X, "individual") - Between(X, "group")
yBlambda <- pmodel.response(data, model = "Between", effect = "group")
ZSeta <- Sum(Z, effect = "individual")
ZSlambda <- Sum(Z, effect = "group")
XSeta <- Sum(X, effect = "individual")
estm1 <- plm.fit(data, effect = "individual", model = "within")
estm2 <- lm.fit(ZBetaBlambda, yBetaBlambda)
estm3 <- lm.fit(ZBlambda, yBlambda)
quad <- c(crossprod(estm1$residuals),
crossprod(estm2$residuals),
crossprod(estm3$residuals))
M["w", "nu"] <- O - N - K
M["w", "eta"] <- 0
M["w", "lambda"] <- 0
M["id", "nu"] <- N - G - K
M["id", "eta"] <- O - sum(TG) - trace(crossprod(t(solve(crossprod(XBetaBlambda))), crossprod(XSeta, XBetaBlambda)))
M["id", "lambda"] <- 0
M["gp", "nu"] <- G - K - 1
M["gp", "eta"] <- sum(TG) - trace(crossprod(t(CPZBlambda.solve), crossprod(ZBlambda, ZSeta)))
M["gp", "lambda"] <- O - trace(crossprod(t(CPZBlambda.solve), crossprod(ZSlambda, Z)))
}
Gs <- as.numeric(collapse::qtable(gps)[as.character(gps)])
Tn <- as.numeric(collapse::qtable(ids)[as.character(ids)])
sigma2 <- as.numeric(solve(M, quad))
names(sigma2) <- c("idios", "id", "gp")
theta <- list(id = 1 - sqrt(sigma2["idios"] / (Tn * sigma2["id"] + sigma2["idios"])),
gp = sqrt(sigma2["idios"] / (Tn * sigma2["id"] + sigma2["idios"])) -
sqrt(sigma2["idios"] / (Gs * sigma2["gp"] + Tn * sigma2["id"] + sigma2["idios"]))
)
result <- list(sigma2 = sigma2, theta = theta)
return(structure(result, class = "ercomp", balanced = balanced, effect = effect))
} ### END nested models
# the "classic" error component model
Z <- model.matrix(data)
O <- nrow(Z)
K <- ncol(Z) - 1L # INTERCEPT
pdim <- pdim(data)
N <- pdim$nT$n
TS <- pdim$nT$T
NTS <- N * (effect != "time") + TS * (effect != "individual") - 1L * (effect == "twoways")
Tn <- pdim$Tint$Ti
Nt <- pdim$Tint$nt
# Estimate the relevant models
estm <- vector(length = 3L, mode = "list")
estm[[1L]] <- plm.fit(data, model = models[1L], effect = effect)
# Check what is the second model
secmod <- na.omit(models[2:3])[1L]
if (secmod %in% c("within", "pooling")){
amodel <- plm.fit(data, model = secmod, effect = effect)
if (effect != "time") estm[[2L]] <- amodel
if (effect != "individual") estm[[3L]] <- amodel
}
if (secmod %in% c("between", "Between")){
if (effect != "time") estm[[2L]] <- plm.fit(data, model = secmod, effect = "individual")
if (effect != "individual") estm[[3L]] <- plm.fit(data, model = secmod, effect = "time")
# check if Between model was estimated correctly
swar_Between_check(estm[[2L]], method)
swar_Between_check(estm[[3L]], method)
}
KS <- vapply(estm, function(x) { length(x$coefficients) - "(Intercept)" %in% names(x$coefficients) },
FUN.VALUE = 0.0, USE.NAMES = FALSE)
quad <- vector(length = 3L, mode = "numeric")
# first quadratic form, within transformation
hateps_w <- resid(estm[[1L]], model = "pooling")
quad[1L] <- crossprod(Within(hateps_w, effect = effect))
# second quadratic form, between transformation
if (effect != "time"){
hateps_id <- resid(estm[[2L]], model = "pooling")
quad[2L] <- as.numeric(crossprod(Between(hateps_id, effect = "individual")))
}
if (effect != "individual"){
hateps_ts <- resid(estm[[3L]], model = "pooling")
quad[3L] <- as.numeric(crossprod(Between(hateps_ts, effect = "time")))
}
M <- matrix(NA_real_, nrow = 3L, ncol = 3L,
dimnames = list(c("w", "id", "ts"),
c("nu", "eta", "mu")))
# Compute the M matrix :
## ( q_w) ( w_nu w_eta w_mu ) ( s^2_nu )
## | | = | | | |
## ( q_bid) ( bid_nu bid_eta bid_mu ) ( s^2_eta)
## | | = | | | |
## (q_btime) ( btime_nu btime_eta btime_mu) ( s^2_mu )
# In case of balanced panels, simple denominators are
# available if dfcor < 3
if (dfcor[1L] != 3L){
# The number of time series in the balanced panel is replaced
# by the harmonic mean of the number of time series in case of
# unbalanced panels
barT <- if(balanced) TS else { length(Tn) / sum(Tn ^ (- 1)) }
M["w", "nu"] <- O
if (dfcor[1L] == 1L) M["w", "nu"] <- M["w", "nu"] - NTS
if (dfcor[1L] == 2L) M["w", "nu"] <- M["w", "nu"] - NTS - KS[1L]
if (effect != "time"){
M["w", "eta"] <- 0
M["id", "nu"] <- if(dfcor[2L] == 2L) { N - KS[2L] - 1L } else N
M["id", "eta"] <- barT * M["id", "nu"]
}
if (effect != "individual"){
M["w", "mu"] <- 0
M["ts", "nu"] <- if(dfcor[2L] == 2L) { TS - KS[3L] - 1L } else TS
M["ts", "mu"] <- N * M["ts", "nu"]
}
if (effect == "twoways") {
M["ts", "eta"] <- M["id", "mu"] <- 0
}
}
else{
# General case, compute the unbiased version of the estimators
if ("pooling" %in% models){
mp <- match("pooling", models)
Z <- model.matrix(estm[[mp]], model = "pooling")
CPZM <- solve(crossprod(Z))
if (effect != "time"){
ZSeta <- model.matrix(estm[[mp]], model = "Sum", effect = "individual")
CPZSeta <- crossprod(ZSeta, Z)
}
if (effect != "individual"){
ZSmu <- model.matrix(estm[[mp]], model = "Sum", effect = "time")
CPZSmu <- crossprod(ZSmu, Z)
}
}
if (models[1L] == "pooling"){
ZW <- model.matrix(estm[[1L]], model = "within", effect = effect, cstcovar.rm = "none")
CPZW <- crossprod(ZW)
CPZM.CPZW <- crossprod(CPZM, CPZW)
M["w", "nu"] <- O - NTS - trace(CPZM.CPZW)
if (effect != "time"){
CPZM.CPZSeta <- crossprod(CPZM, CPZSeta)
M["w", "eta"] <- trace(crossprod(t(CPZM.CPZW), CPZM.CPZSeta))
}
if (effect != "individual"){
CPZM.CPZSmu <- crossprod(CPZM, CPZSmu)
M["w", "mu"] <- trace(crossprod(t(CPZM.CPZW), CPZM.CPZSmu))
}
}
if (secmod == "pooling"){
if (effect != "time"){
ZBeta <- model.matrix(estm[[2L]], model = "Between", effect = "individual")
CPZBeta <- crossprod(ZBeta)
CPZM.CPZBeta <- crossprod(CPZM, CPZBeta)
CPZM.CPZSeta <- crossprod(CPZM, CPZSeta)
CPZM.CPZBeta.CPZM.CPZSeta <- crossprod(t(CPZM.CPZBeta), CPZM.CPZSeta) # == CPZM %*% CPZBeta %*% CPZM %*% CPZSeta
M["id", "nu"] <- N - trace(CPZM.CPZBeta)
M["id", "eta"] <- O - 2 * trace(CPZM.CPZSeta) +
trace(CPZM.CPZBeta.CPZM.CPZSeta)
}
if (effect != "individual"){
ZBmu <- model.matrix(estm[[3L]], model = "Between", effect = "time")
CPZBmu <- crossprod(ZBmu)
CPZM.CPZBmu <- crossprod(CPZM, CPZBmu)
CPZM.CPZSmu <- crossprod(CPZM, CPZSmu)
CPZM.CPZBmu.CPZM.CPZSmu <- crossprod(t(CPZM.CPZBmu), CPZM.CPZSmu)
M["ts", "nu"] <- TS - trace(CPZM.CPZBmu)
M["ts", "mu"] <- O - 2 * trace(CPZM.CPZSmu) +
trace(CPZM.CPZBmu.CPZM.CPZSmu)
}
if (effect == "twoways"){
CPZBmuSeta <- crossprod(ZBmu, ZSeta)
CPZBetaSmu <- crossprod(ZBeta, ZSmu)
CPZM.CPZBetaSmu <- crossprod(CPZM, CPZBetaSmu)
CPZM.CPZBmuSeta <- crossprod(CPZM, CPZBmuSeta)
## These are already calc. by effect != "individual" and effect != "time"
# CPZM.CPZSmu <- crossprod(CPZM, CPZSmu)
# CPZM.CPZBmu <- crossprod(CPZM, CPZBmu)
# CPZM.CPZBeta <- crossprod(CPZM, CPZBeta)
# CPZM.CPZSeta <- crossprod(CPZM, CPZSeta)
CPZM.CPZBeta.CPZM.CPZSmu <- crossprod(t(CPZM.CPZBeta), CPZM.CPZSmu) # == CPZM %*% CPZBeta %*% CPZM %*% CPZSmu
CPZM.CPZBmu.CPZM.CPZSeta <- crossprod(t(CPZM.CPZBmu), CPZM.CPZSeta) # == CPZM %*% CPZBmu %*% CPZM %*% CPZSeta
M["id", "mu"] <- N - 2 * trace(CPZM.CPZBetaSmu) +
trace(CPZM.CPZBeta.CPZM.CPZSmu)
M["ts", "eta"] <- TS - 2 * trace(CPZM.CPZBmuSeta) +
trace(CPZM.CPZBmu.CPZM.CPZSeta)
}
}
if ("within" %in% models){
WX <- model.matrix(estm[[match("within", models)]], model = "within",
effect = effect, cstcovar.rm = "all")
# K <- ncol(WX)
# MK <- length(attr(WX, "constant")) - 1
KW <- ncol(WX)
if (models[1L] == "within"){
M["w", "nu"] <- O - NTS - KW # + MK # INTERCEPT
if (effect != "time") M["w", "eta"] <- 0
if (effect != "individual") M["w", "mu"] <- 0
}
if (secmod == "within"){
CPXM <- solve(crossprod(WX))
if (effect != "time"){
XBeta <- model.matrix(estm[[2L]], model = "Between",
effect = "individual")[ , -1L, drop = FALSE] # INTERCEPT
XBeta <- t(t(XBeta) - colMeans(XBeta))
CPXBeta <- crossprod(XBeta)
amemiya_check(CPXM, CPXBeta, method) # catch non-estimable 'amemiya'
M["id", "nu"] <- N - 1 + trace( crossprod(CPXM, CPXBeta) )
M["id", "eta"] <- O - sum(Tn ^ 2) / O
}
if (effect != "individual"){
XBmu <- model.matrix(estm[[3L]], model = "Between",
effect = "time")[ , -1L, drop = FALSE] # INTERCEPT
XBmu <- t(t(XBmu) - colMeans(XBmu))
CPXBmu <- crossprod(XBmu)
amemiya_check(CPXM, CPXBmu, method) # catch non-estimable 'amemiya'
M["ts", "nu"] <- TS - 1 + trace( crossprod(CPXM, CPXBmu) )
M["ts", "mu"] <- O - sum(Nt ^ 2) / O
}
if (effect == "twoways"){
M["id", "mu"] <- N - sum(Nt ^ 2) / O
M["ts", "eta"] <- TS - sum(Tn ^ 2) / O
}
}
} # END if ("within" %in% models)
if (length(intersect(c("between", "Between"), models))){
if (effect != "time"){
Zeta <- model.matrix(estm[[2L]], model = "pooling", effect = "individual")
ZBeta <- model.matrix(estm[[2L]], model = "Between", effect = "individual")
ZSeta <- model.matrix(estm[[2L]], model = "Sum", effect = "individual")
CPZSeta <- crossprod(ZSeta, Z)
CPZMeta <- solve(crossprod(ZBeta))
M["id", "nu"] <- N - K - 1
M["id", "eta"] <- O - trace( crossprod(CPZMeta, CPZSeta) )
}
if (effect != "individual"){
Zmu <- model.matrix(estm[[3L]], model = "pooling", effect = "time")
ZBmu <- model.matrix(estm[[3L]], model = "Between", effect = "time")
ZSmu <- model.matrix(estm[[3L]], model = "Sum", effect = "time")
CPZSmu <- crossprod(ZSmu, Z)
CPZMmu <- solve(crossprod(ZBmu))
M["ts", "nu"] <- TS - K - 1
M["ts", "mu"] <- O - trace( crossprod(CPZMmu, CPZSmu) )
}
if (effect == "twoways"){
if (! balanced){
ZSmuBeta <- Sum(ZBeta, effect = "time")
ZBetaSmuBeta <- crossprod(ZBeta, ZSmuBeta)
ZSetaBmu <- Sum(ZBmu, effect = "individual")
ZBmuSetaBmu <- crossprod(ZBmu, ZSetaBmu)
M["id", "mu"] <- N - trace(crossprod(CPZMeta, ZBetaSmuBeta))
M["ts", "eta"] <- TS - trace(crossprod(CPZMmu, ZBmuSetaBmu))
}
else M["id", "mu"] <- M["ts", "eta"] <- 0
}
}
} ## END of General case, compute the unbiased version of the estimators
sigma2 <- as.numeric(solve(M[therows, therows], quad[therows]))
names(sigma2) <- c("idios", "id", "time")[therows]
sigma2[sigma2 < 0] <- 0 # if negative variance estimate, set to zero
theta <- list()
if (! balanced){
xindex <- unclass(index(data)) # unclass for speed
ids <- xindex[[1L]]
tss <- xindex[[2L]]
Tns <- Tn[as.character(ids)]
Nts <- Nt[as.character(tss)]
}
else{
Tns <- TS
Nts <- N
}
if (effect != "time") theta$id <- (1 - (1 + Tns * sigma2["id"] / sigma2["idios"]) ^ (-0.5))
if (effect != "individual") theta$time <- (1 - (1 + Nts * sigma2["time"] / sigma2["idios"]) ^ (-0.5))
if (effect == "twoways") {
theta$total <- theta$id + theta$time - 1 +
(1 + Nts * sigma2["time"] / sigma2["idios"] +
Tns * sigma2["id"] / sigma2["idios"]) ^ (-0.5)
names(theta$total) <- if(balanced) "total" else paste0(names(theta$id), "-", names(theta$time))
# tweak for numerical precision:
# if either theta$id or theta$time is 0 => theta$total must be zero
# but in calculation above some precision is lost
if( isTRUE(all.equal(sigma2[["time"]], 0, check.attributes = FALSE))
|| isTRUE(all.equal(sigma2[["id"]], 0, check.attributes = FALSE)))
theta$total <- 0
}
if (effect != "twoways") theta <- theta[[1L]]
result <- list(sigma2 = sigma2, theta = theta)
structure(result, class = "ercomp", balanced = balanced, effect = effect)
}
#' @rdname ercomp
#' @export
print.ercomp <- function(x, digits = max(3, getOption("digits") - 3), ...){
effect <- attr(x, "effect")
balanced <- attr(x, "balanced")
sigma2 <- x$sigma2
theta <- x$theta
if (effect == "twoways"){
sigma2 <- unlist(sigma2)
sigma2Table <- cbind(var = sigma2, std.dev = sqrt(sigma2), share = sigma2 / sum(sigma2))
rownames(sigma2Table) <- c("idiosyncratic", "individual", "time")
}
if (effect == "individual"){
sigma2 <- unlist(sigma2[c("idios", "id")])
sigma2Table <- cbind(var = sigma2, std.dev = sqrt(sigma2), share = sigma2 / sum(sigma2))
rownames(sigma2Table) <- c("idiosyncratic", effect)
}
if (effect == "time"){
sigma2 <- unlist(sigma2[c("idios", "time")])
sigma2Table <- cbind(var = sigma2, std.dev = sqrt(sigma2), share = sigma2 / sum(sigma2))
rownames(sigma2Table) <- c("idiosyncratic", effect)
}
if (effect == "nested"){
sigma2 <- unlist(sigma2)
sigma2Table <- cbind(var = sigma2, std.dev = sqrt(sigma2), share = sigma2 / sum(sigma2))
rownames(sigma2Table) <- c("idiosyncratic", "individual", "group")
}
printCoefmat(sigma2Table, digits)
if (! is.null(x$theta)){
if (effect %in% c("individual", "time")){
if (balanced){
cat(paste("theta: ", signif(x$theta,digits), "\n", sep = ""))
}
else{
cat("theta:\n")
print(summary(x$theta))
}
}
if (effect == "twoways"){
if(balanced){
cat(paste("theta: ", signif(x$theta$id,digits), " (id) ",
signif(x$theta$time,digits), " (time) ",
signif(x$theta$total,digits), " (total)\n", sep = ""))
} else {
cat("theta:\n")
print(rbind(id = summary(x$theta$id),
time = summary(x$theta$time),
total = summary(x$theta$total)))
}
}
if (effect == "nested"){
cat("theta:\n")
print(rbind(id = summary(x$theta$id),
group = summary(x$theta$gp)))
}
}
invisible(x)
}
amemiya_check <- function(matA, matB, method) {
## non-exported, used in ercomp()
## little helper function to check matrix multiplication compatibility
## in ercomp() for the amemiya estimator: if model contains variables without
## within variation (individual or time), the model is not estimable
if (NROW(matA) < NCOL(matB) && method == "amemiya" ) {
offending_vars <- setdiff(colnames(matB), rownames(matA))
offending_vars <- if (length(offending_vars) > 3L) {
paste0(paste(offending_vars[1:3], collapse = ", "), ", ...")
} else {
paste(offending_vars, collapse = ", ")
}
stop(paste0("'amemiya' model not estimable due to variable(s) lacking within variation: ", offending_vars))
} else NULL
}
swar_Between_check <- function(x, method) {
## non-exported, used in ercomp()
## little helper function to check feasibility of Between model in Swamy-Arora estimation
## in ercomp(): if model contains too few groups (individual, time) the Between
## model is not estimable (but does not error)
if (describe(x, "model") %in% c("between", "Between")) {
pdim <- pdim(x)
grp <- switch(describe(x, "effect"),
"individual" = pdim$nT$n,
"time" = pdim$nT$T)
# cannot use df.residual(x) here because that gives the number for the "uncompressed" Between model
if (length(x$aliased) >= grp) stop(paste0("model not estimable: ", length(x$aliased),
" coefficient(s) (incl. intercept) to be estimated",
" but only ", grp, " ", describe(x, "effect"), "(s)",
" in data for the between model necessary for",
" Swamy-Arora random-effect model estimation"))
} else NULL
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.