aic.dof | R Documentation |
This function computes the Akaike and Bayesian Information Criteria and the Generalized minimum description length.
aic.dof(RSS, n, DoF, sigmahat)
bic.dof(RSS, n, DoF, sigmahat)
gmdl.dof(sigmahat, n, DoF, yhat)
RSS |
vector of residual sum of squares. |
n |
number of observations. |
DoF |
vector of Degrees of Freedom. The length of |
sigmahat |
Estimated model error. The length of |
yhat |
vector of squared norm of Yhat. The length of |
The gmdl criterion is defined as
gmdl=\frac{n}{2}log(S)+\frac{DoF}{2}log(F)+\frac{1}{2}log(n)
with
S=\hat\sigma^2
vector |
numerical values of the requested AIC, BIC or GMDL. |
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
M. Hansen, B. Yu. (2001). Model Selection and Minimum Descripion
Length Principle, Journal of the American Statistical Association,
96, 746-774.
N. Kraemer, M. Sugiyama. (2011). The Degrees of Freedom of
Partial Least Squares Regression. Journal of the American Statistical
Association, 106(494), 697-705.
N. Kraemer, M.L. Braun, Kernelizing PLS,
Degrees of Freedom, and Efficient Model Selection, Proceedings of the
24th International Conference on Machine Learning, Omni Press, (2007)
441-448.
plsR.dof
for degrees of freedom computation and
infcrit.dof
for computing information criteria directly from a
previously fitted plsR model.
data(Cornell)
XCornell<-Cornell[,1:7]
yCornell<-Cornell[,8]
modpls <- plsR(yCornell,XCornell,4)
dof.object <- plsR.dof(modpls)
aic.dof(modpls$RSS,modpls$nr,dof.object$DoF,dof.object$sigmahat)
bic.dof(modpls$RSS,modpls$nr,dof.object$DoF,dof.object$sigmahat)
gmdl.dof(dof.object$sigmahat,modpls$nr,dof.object$DoF,dof.object$yhat)
naive.object <- plsR.dof(modpls,naive=TRUE)
aic.dof(modpls$RSS,modpls$nr,naive.object$DoF,naive.object$sigmahat)
bic.dof(modpls$RSS,modpls$nr,naive.object$DoF,naive.object$sigmahat)
gmdl.dof(naive.object$sigmahat,modpls$nr,naive.object$DoF,naive.object$yhat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.