View source: R/kfolds2CVinfos_lm.R
kfolds2CVinfos_lm | R Documentation |
This function extracts and computes information criteria and fits statistics for k-fold cross validated partial least squares models for both formula or classic specifications of the model.
kfolds2CVinfos_lm(pls_kfolds, MClassed = FALSE, verbose = TRUE)
pls_kfolds |
an object computed using |
MClassed |
should number of miss classed be computed |
verbose |
should infos be displayed ? |
The Mclassed option should only set to TRUE
if the response is
binary.
list |
table of fit statistics for first group partition |
list() |
... |
list |
table of fit statistics for last group partition |
Use summary
and cv.plsR
instead.
Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47
kfolds2coeff
, kfolds2Pressind
,
kfolds2Press
, kfolds2Mclassedind
and
kfolds2Mclassed
to extract and transforms results from k-fold
cross-validation.
data(Cornell)
summary(cv.plsR(Y~.,data=Cornell,nt=10,K=6,verbose=FALSE))
data(pine)
summary(cv.plsR(x11~.,data=pine,nt=10,NK=3,verbose=FALSE),verbose=FALSE)
data(pineNAX21)
summary(cv.plsR(x11~.,data=pineNAX21,nt=10,NK=3,
verbose=FALSE),verbose=FALSE)
data(aze_compl)
summary(cv.plsR(y~.,data=aze_compl,nt=10,K=8,NK=3,
verbose=FALSE),MClassed=TRUE,verbose=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.