Number of missclassified individuals for k-fold cross validated partial least squares regression models.

Share:

Description

This function indicates the total number of missclassified individuals for k-fold cross validated partial least squares regression models.

Usage

1
kfolds2Mclassed(pls_kfolds)

Arguments

pls_kfolds

a k-fold cross validated partial least squares regression model used on binary data

Value

list

Total number of missclassified individuals vs number of components for the first group partition

...

...

list

Total number of missclassified individuals vs number of components for the last group partition

Note

Use cv.plsR to create k-fold cross validated partial least squares regression models.

Author(s)

Frederic Bertrand
frederic.bertrand@math.unistra.fr
http://www-irma.u-strasbg.fr/~fbertran/

References

Nicolas Meyer, Myriam Maumy-Bertrand et Frederic Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://smf4.emath.fr/Publications/JSFdS/151_2/pdf/sfds_jsfds_151_2_1-18.pdf

See Also

kfolds2coeff, kfolds2Press, kfolds2Pressind and kfolds2Mclassedind to extract and transforms results from k-fold cross validation.

Examples

1
2
3
4
5
6
7
8
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
bbb <- cv.plsR(dataY=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=1)
bbb2 <- cv.plsR(dataY=yaze_compl,dataX=Xaze_compl,nt=10,K=8,NK=2)
kfolds2Mclassed(bbb)
kfolds2Mclassed(bbb2)
rm(list=c("Xaze_compl","yaze_compl","bbb","bbb2"))

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.