kfolds2CVinfos_glm: Extracts and computes information criteria and fits...

View source: R/kfolds2CVinfos_glm.R

kfolds2CVinfos_glmR Documentation

Extracts and computes information criteria and fits statistics for k-fold cross validated partial least squares glm models

Description

This function extracts and computes information criteria and fits statistics for k-fold cross validated partial least squares glm models for both formula or classic specifications of the model.

Usage

kfolds2CVinfos_glm(pls_kfolds, MClassed = FALSE, verbose = TRUE)

Arguments

pls_kfolds

an object computed using cv.plsRglm

MClassed

should number of miss classed be computed ?

verbose

should infos be displayed ?

Details

The Mclassed option should only set to TRUE if the response is binary.

Value

list

table of fit statistics for first group partition

list()

...

list

table of fit statistics for last group partition

Note

Use summary and cv.plsRglm instead.

Author(s)

Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/

References

Nicolas Meyer, Myriam Maumy-Bertrand et Frédéric Bertrand (2010). Comparing the linear and the logistic PLS regression with qualitative predictors: application to allelotyping data. Journal de la Societe Francaise de Statistique, 151(2), pages 1-18. http://publications-sfds.math.cnrs.fr/index.php/J-SFdS/article/view/47

See Also

kfolds2coeff, kfolds2Pressind, kfolds2Press, kfolds2Mclassedind and kfolds2Mclassed to extract and transforms results from k-fold cross-validation.

Examples



data(Cornell)
summary(cv.plsRglm(Y~.,data=Cornell,
nt=6,K=12,NK=1,keepfolds=FALSE,keepdataY=TRUE,modele="pls",verbose=FALSE),MClassed=TRUE)


data(aze_compl)
summary(cv.plsR(y~.,data=aze_compl,nt=10,K=8,modele="pls",verbose=FALSE),
MClassed=TRUE,verbose=FALSE)
summary(cv.plsRglm(y~.,data=aze_compl,nt=10,K=8,modele="pls",verbose=FALSE),
MClassed=TRUE,verbose=FALSE)
summary(cv.plsRglm(y~.,data=aze_compl,nt=10,K=8,
modele="pls-glm-family",
family=gaussian(),verbose=FALSE),
MClassed=TRUE,verbose=FALSE)
summary(cv.plsRglm(y~.,data=aze_compl,nt=10,K=8,
modele="pls-glm-logistic",
verbose=FALSE),MClassed=TRUE,verbose=FALSE)
summary(cv.plsRglm(y~.,data=aze_compl,nt=10,K=8,
modele="pls-glm-family",
family=binomial(),verbose=FALSE),
MClassed=TRUE,verbose=FALSE)


if(require(chemometrics)){
data(hyptis)
hyptis
yhyptis <- factor(hyptis$Group,ordered=TRUE)
Xhyptis <- as.data.frame(hyptis[,c(1:6)])
options(contrasts = c("contr.treatment", "contr.poly"))
modpls2 <- plsRglm(yhyptis,Xhyptis,6,modele="pls-glm-polr")
modpls2$Coeffsmodel_vals
modpls2$InfCrit
modpls2$Coeffs
modpls2$std.coeffs

table(yhyptis,predict(modpls2$FinalModel,type="class"))

modpls3 <- PLS_glm(yhyptis[-c(1,2,3)],Xhyptis[-c(1,2,3),],3,modele="pls-glm-polr",
dataPredictY=Xhyptis[c(1,2,3),],verbose=FALSE)

summary(cv.plsRglm(factor(Group,ordered=TRUE)~.,data=hyptis[,-c(7,8)],nt=4,K=10,
random=TRUE,modele="pls-glm-polr",keepcoeffs=TRUE,verbose=FALSE),
MClassed=TRUE,verbose=FALSE)
}



plsRglm documentation built on March 31, 2023, 11:10 p.m.