Nothing
test_that("clean_scores function cleans data as expected", {
# Create some sample data
scores_data <- list(
data.frame(Score = c(90, 85, 70), stringsAsFactors = FALSE),
data.frame(Score = c(80, 75, 60), stringsAsFactors = FALSE)
)
rownames(scores_data[[1]]) <- c("104.1a_FA060920_2020-06-09_C05.fsa.1",
"105.2b_FA060920_2020-06-09_C05.fsa.1",
"106.3c_FA060920_2020-06-09_C05.fsa.1")
rownames(scores_data[[2]]) <- c("107.4d_FA060920_2020-06-09_C05.fsa.1",
"108.5e_FA060920_2020-06-09_C05.fsa.1",
"109.6f_FA060920_2020-06-09_C05.fsa.1")
# Call the function
cleaned_data <- pooledpeaks::clean_scores(scores_data,
pattern1 = "_FA.*",
replacement1 = "",
pattern2 = "_.*",
replacement2 = "",
pattern3 = "\\.1*$",
replacement3 = "")
# Test that the function returns a data frame
expect_true(isTRUE(is.data.frame(cleaned_data)))
# Test that the cleaned data frame has expected number of rows
expect_equal(nrow(cleaned_data), 6)
# Test that the ID column is cleaned as expected
expect_equal(unique(cleaned_data$ID), c("104.1a", "105.2b", "106.3c",
"107.4d", "108.5e", "109.6f"))
# Test that the filename column is cleaned as expected
expect_equal(unique(cleaned_data$filename),
c("104.1a_FA060920_2020-06-09_C05.fsa",
"105.2b_FA060920_2020-06-09_C05.fsa",
"106.3c_FA060920_2020-06-09_C05.fsa",
"107.4d_FA060920_2020-06-09_C05.fsa",
"108.5e_FA060920_2020-06-09_C05.fsa",
"109.6f_FA060920_2020-06-09_C05.fsa"))
})
test_that("lf_to_tdf function transforms data as expected", {
# Create a sample LF data frame resembling cleaned scores data
lf_data <- data.frame(ID = c("104.1a", "104.1a", "105.2b", "105.2b"),
filename = c("104.1a_FA060920_2020-06-09_C05.fsa",
"104.1a_FA060920_2020-06-09_C05.fsa",
"105.2b_FA060920_2020-06-09_C05.fsa",
"105.2b_FA060920_2020-06-09_C05.fsa"),
hei = c(100, 120, 90, 110),
pos = c(1, 2, 1, 2),
wei = c(117, 120, 123, 126),
# Adjust weights to increments of 3
stringsAsFactors = FALSE)
# Call the function
tdf_data <- pooledpeaks::lf_to_tdf(lf_data)
# Test that the function returns a data frame
expect_true(isTRUE(is.data.frame(tdf_data)))
# Test that the transformed data frame has expected number of rows
expect_equal(nrow(tdf_data), 4)
# Test that the transformed data frame has expected number of columns
expect_equal(ncol(tdf_data), 2) # 3 weights + ID column
# Test that the row names are correct
expect_equal(rownames(tdf_data), c("117", "120", "123", "126"))
# Test that the data values are correct
expect_equal(tdf_data[ ,1], c("100", "120", "0", "0"))
# Assuming "117" column is empty for the first row
expect_equal(tdf_data[ ,2], c("0", "0", "90", "110"))
# Assuming "120", "123", "126" columns are empty for the second row
})
test_that("data_manipulation function manipulates data as expected", {
# Create a sample marker data frame
marker_data <- data.frame(
Sample1 = c(400, 600, 700),
Sample2 = c(450, 550, 480),
Sample3 = c(300, 200, 400)
)
# Call the function with default threshold
manipulated_data <- pooledpeaks::data_manipulation(marker_data)
# Test that the function returns a data frame
expect_true(isTRUE(is.data.frame(manipulated_data)))
# Test that the manipulated data frame has the correct dimensions
expect_equal(nrow(manipulated_data), 3) # 3 markers
expect_equal(ncol(manipulated_data), 2) # 2 samples
# Test that at least one peak for each sample is greater than 500
expect_true(all(apply(manipulated_data, 2, function(x) any(x > 500))))
# Call the function with custom threshold
manipulated_data_custom <- pooledpeaks::data_manipulation(marker_data,
threshold = 600)
# Test that >= 1 peak for each sample is greater than the custom threshold
expect_true(all(apply(manipulated_data_custom, 2, function(x) any(x > 600))))
})
test_that("PCDM function manipulates data as expected", {
# Create sample consolidated marker data frame
consolidated_marker <- data.frame(
Sample1 = c(0.2, 0.3, 0.5),
Sample2 = c(0.1, 0.2, 0.7),
Sample3 = c(0.3, 0.4, 0.3)
)
# Create sample egg count data frame
eggcount <- data.frame(
ID = c("Sample1", "Sample2", "Sample3"),
n = c(10, 20, 30)
)
# Call the function
manipulated_data <- pooledpeaks::PCDM(consolidated_marker, eggcount,
"Marker1")
# Test that the function returns a data frame
expect_true(isTRUE(is.data.frame(manipulated_data)))
# Test that the manipulated data frame has the correct dimensions
expect_equal(nrow(manipulated_data), 5) # 3 alleles + 2 header row
expect_equal(ncol(manipulated_data), 4) # 3 samples + 1 ID column
# Test that the column names are correct
expect_equal(colnames(manipulated_data), c("Locus_allele", "Sample1",
"Sample2", "Sample3"))
# Test that the first column contains the marker name
expect_equal(manipulated_data[1, "Locus_allele"], "Marker1")
# Test that the data values are correct
expect_equal(as.numeric(manipulated_data[3, "Sample1"]), 0.2)
expect_equal(as.numeric(manipulated_data[4, "Sample2"]), 0.2)
expect_equal(as.numeric(manipulated_data[5, "Sample3"]), 0.3)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.