Nothing
#' Estimation of the conditional average treatment effect (CATE) score for continuous data
#'
#' Provides singly robust and doubly robust estimation of CATE score with up to 6 scoring methods
#' among the following: Linear regression, boosting, two regressions, contrast regression, random forest and
#' generalized additive model.
#'
#' @param cate.model A formula describing the outcome model to be fitted.
#' The outcome must appear on the left-hand side.
#' @param init.model A formula describing the initial predictor model. The outcome must appear on the left-hand side.
#' It must be specified when \code{score.method = contrastReg} or \code{twoReg}.
#' @param ps.model A formula describing the propensity score model to be fitted.
#' The treatment must appear on the left-hand side.
#' The treatment must be a numeric vector coded as 0/1.
#' If data are from a RCT, specify \code{ps.model} as an intercept-only model.
#' @param data A data frame containing the variables in the outcome and propensity score models;
#' a data frame with \code{n} rows (1 row per observation).
#' @param score.method A vector of one or multiple methods to estimate the CATE score.
#' Allowed values are: \code{'boosting'}, \code{'gaussian'}, \code{'twoReg'},
#' \code{'contrastReg'}, \code{'randomForest'}, \code{'gam'}.
#' @param higher.y A logical value indicating whether higher (\code{TRUE}) or
#' lower (\code{FALSE}) values of the outcome are more desirable. Default is \code{TRUE}.
#' @param prop.cutoff A vector of numerical values (in `(0, 1]`) specifying percentiles of
#' the estimated log CATE scores to define nested subgroups. Each element represents the
#' cutoff to separate observations in nested subgroups (below vs above cutoff).
#' The length of \code{prop.cutoff} is the number of nested subgroups.
#' An equally-spaced sequence of proportions ending with 1 is recommended.
#' Default is \code{seq(0.5, 1, length = 6)}.
#' @param ps.method A character value for the method to estimate the propensity score.
#' Allowed values include one of: \code{'glm'} for logistic regression with main effects only
#' (default), or \code{'lasso'} for a logistic regression with main effects and LASSO penalization
#' on two-way interactions (added to the model if not specified in \code{ps.model}).
#' @param minPS A numerical value (in `[0, 1]`) below which estimated propensity scores should be
#' truncated. Default is \code{0.01}.
#' @param maxPS A numerical value (in `(0, 1]`) above which estimated propensity scores should be
#' truncated. Must be strictly greater than \code{minPS}. Default is \code{0.99}.
#' @param initial.predictor.method A character vector for the method used to get initial outcome
#' predictions conditional on the covariates in \code{init.model} in
#' \code{score.method = 'twoReg'} and \code{'contrastReg'}. Allowed values include one of
#' \code{'gaussian'} (fastest), \code{'boosting'} and \code{'gam'}.
#' Default is \code{'boosting'}.
#' @param xvar.smooth.init A vector of characters indicating the name of the variables used as the
#' smooth terms if \code{initial.predictor.method = 'gam'}. The variables must be selected from
#' the variables listed in \code{init.model}. Default is \code{NULL}, which uses all variables
#' in \code{init.model}.
#' @param xvar.smooth.score A vector of characters indicating the name of the variables used as the
#' smooth terms if \code{score.method = 'gam'}. The variables must be selected from
#' the variables listed in \code{cate.model}. Default is \code{NULL}, which uses all variables
#' in \code{cate.model}.
#' @param tree.depth A positive integer specifying the depth of individual trees in boosting
#' (usually 2-3). Used only if \code{score.method = 'boosting'} or
#' if \code{score.method = 'twoReg'} or \code{'contrastReg'} and
#' \code{initial.predictor.method = 'boosting'}. Default is \code{2}.
#' @param n.trees.rf A positive integer specifying the number of trees. Used only if
#' \code{score.method = 'randomForest'}. Default is \code{1000}.
#' @param n.trees.boosting A positive integer specifying the maximum number of trees in boosting
#' (usually 100-1000). Used only if \code{score.method = 'boosting'} or
#' if \code{score.method = 'twoReg'} or \code{'contrastReg'} and
#' \code{initial.predictor.method = 'boosting'}. Default is \code{200}.
#' @param B A positive integer specifying the number of time cross-fitting is repeated in
#' \code{score.method = 'twoReg'} and \code{'contrastReg'}. Default is \code{3}.
#' @param Kfold A positive integer specifying the number of folds (parts) used in cross-fitting
#' to partition the data in \code{score.method = 'twoReg'} and \code{'contrastReg'}.
#' Default is \code{6}.
#' @param plot.gbmperf A logical value indicating whether to plot the performance measures
#' in boosting. Used only if \code{score.method = 'boosting'} or if
#' \code{score.method = 'twoReg'} or \code{'contrastReg'} and
#' \code{initial.predictor.method = 'boosting'}. Default is \code{TRUE}.
#' @param error.maxNR A numerical value > 0 indicating the minimum value of the mean absolute
#' error in Newton Raphson algorithm. Used only if \code{score.method = 'contrastReg'}.
#' Default is \code{0.001}.
#' @param tune A vector of 2 numerical values > 0 specifying tuning parameters for the
#' Newton Raphson algorithm. \code{tune[1]} is the step size, \code{tune[2]} specifies a
#' quantity to be added to diagonal of the slope matrix to prevent singularity.
#' Used only if \code{score.method = 'contrastReg'}. Default is \code{c(0.5, 2)}.
#' @param seed An optional integer specifying an initial randomization seed for reproducibility.
#' Default is \code{NULL}, corresponding to no seed.
#' @param verbose An integer value indicating what kind of intermediate progress messages should
#' be printed. \code{0} means no outputs. \code{1} means only progress and run time.
#' \code{2} means progress, run time, and all errors and warnings. Default is \code{0}.
#' @param ... Additional arguments for \code{gbm()}
#'
#' @return Returns a list containing the following components:
#' \itemize{
#' \item{\code{ate.gaussian}: }A vector of numerical values of length \code{prop.cutoff}
#' containing the estimated ATE in nested subgroups (defined by \code{prop.cutoff})
#' constructed based on the estimated CATE scores with Poisson regression.
#' Only provided if \code{score.method} includes \code{'gaussian'}.
#' \item{\code{ate.boosting}: }Same as \code{ate.gaussian}, but with the nested subgroups based
#' the estimated CATE scores with boosting. Only provided if \code{score.method}
#' includes \code{'boosting'}.
#' \item{\code{ate.twoReg}: }Same as \code{ate.gaussian}, but with the nested subgroups based
#' the estimated CATE scores with two regressions.
#' Only provided if \code{score.method} includes \code{'twoReg'}.
#' \item{\code{ate.contrastReg}: }Same as \code{ate.gaussian}, but with the nested subgroups based
#' the estimated CATE scores with contrast regression.
#' Only provided if \code{score.method} includes \code{'contrastReg'}.
#' \item{\code{ate.randomForest}: }Same as \code{ate.gaussian}, but with the nested subgroups based
#' the estimated CATE scores with random forest.
#' Only provided if \code{score.method} includes \code{'gam'}.
#' \item{\code{ate.gam}: }Same as \code{ate.gaussian}, but with the nested subgroups based
#' the estimated CATE scores with generalized additive model.
#' Only provided if \code{score.method} includes \code{'gam'}.
#' \item{\code{score.gaussian}: }A vector of numerical values of length n
#' (number of observations in \code{data}) containing the estimated CATE scores
#' according to the linear regression. Only provided if \code{score.method}
#' includes \code{'gaussian'}.
#' \item{\code{score.boosting}: }Same as \code{score.gaussian}, but with estimated CATE score
#' according to boosting. Only provided if \code{score.method} includes
#' \code{'boosting'}.
#' \item{\code{score.twoReg}: }Same as \code{score.gaussian}, but with estimated CATE score
#' according to two regressions. Only provided if \code{score.method} includes
#' \code{'twoReg'}.
#' \item{\code{score.contrastReg}: }Same as \code{score.gaussian}, but with estimated CATE score
#' according to contrast regression. Only provided if \code{score.method} includes
#' \code{'contrastReg'}.
#' \item{\code{score.randomForest}: }Same as \code{score.gaussian}, but with estimated CATE score
#' according to random forest. Only provided if \code{score.method}
#' includes \code{'randomForest'}.
#' \item{\code{score.gam}: }Same as \code{score.gaussian}, but with estimated CATE score
#' according to generalized additive model. Only provided if \code{score.method}
#' includes \code{'gam'}.
#' \item{\code{fit}: }Additional details on model fitting if \code{score.method}
#' includes 'boosting' or 'contrastReg':
#' \itemize{
#' \item{\code{result.boosting}: }Details on the boosting model fitted to observations
#' with treatment = 0 \code{($fit0.boosting)} and to observations with treatment = 1 \code{($fit1.boosting)}.
#' Only provided if \code{score.method} includes \code{'boosting'}.
#' \item{\code{result.randomForest}: }Details on the boosting model fitted to observations
#' with treatment = 0 \code{($fit0.randomForest)} and to observations with treatment = 1 \code{($fit1.randomForest)}.
#' Only provided if \code{score.method} includes \code{'randomForest'}.
#' \item{\code{result.gam}: }Details on the boosting model fitted to observations
#' with treatment = 0 \code{($fit0.gam)} and to observations with treatment = 1 \code{($fit1.gam)}.
#' Only provided if \code{score.method} includes \code{'gam'}.
#' \item{\code{result.contrastReg$sigma.contrastReg}: }Variance-covariance matrix of
#' the estimated CATE coefficients in contrast regression.
#' Only provided if \code{score.method} includes \code{'contrastReg'}.
#' }
#' \item{\code{coefficients}: }A data frame with the coefficients of the estimated CATE
#' score by \code{score.method}. The data frame has number of rows equal to the number of
#' covariates in \code{cate.model} and number of columns equal to \code{length(score.method)}.
#' If \code{score.method} includes \code{'contrastReg'}, the data frame has an additional
#' column containing the standard errors of the coefficients estimated with contrast regression.
#' \code{'boosting'}, \code{'randomForest'}, \code{'gam'} do not have coefficient results because these methods do not
#' express the CATE as a linear combination of coefficients and covariates.
#' }
#'
#' @details The CATE score represents an individual-level treatment effect, estimated with
#' either linear regression, boosting, random forest and generalized additive model applied separately by
#' treatment group or with two doubly robust estimators, two regressions and contrast regression
#' (Yadlowsky, 2020) applied to the entire dataset.
#'
#' \code{\link{catefitmean}()} provides the coefficients of the CATE score for each scoring method requested
#' through \code{score.method}. Currently, contrast regression is the only method which allows
#' for inference of the CATE coefficients by providing standard errors of the coefficients.
#' The coefficients can be used to learn the effect size of each variable and predict the
#' CATE score for a new observation.
#'
#' \code{\link{catefitmean}()} also provides the predicted CATE score of each observation in the data set,
#' for each scoring method. The predictions allow ranking the observations from potentially
#' high responders to the treatment to potentially low or standard responders.
#'
#' The estimated ATE among nested subgroups of high responders are also provided by scoring method.
#' Note that the ATEs in \code{\link{catefitmean}()} are derived based on the CATE score which is estimated
#' using the same data sample. Therefore, overfitting may be an issue. \code{\link{catefitmean}()} is more
#' suitable to inspect the estimated ATEs across scoring methods as it implements internal cross
#' validation to reduce optimism.
#'
#' @references Yadlowsky, S., Pellegrini, F., Lionetto, F., Braune, S., & Tian, L. (2020).
#' \emph{Estimation and validation of ratio-based conditional average treatment effects using
#' observational data. Journal of the American Statistical Association, 1-18.} DOI: 10.1080/01621459.2020.1772080.
#'
#' @seealso \code{\link{catecvmean}()} function
#'
catefitmean <- function(data,
score.method,
cate.model,
ps.model,
ps.method = "glm",
init.model = NULL,
initial.predictor.method = "boosting",
minPS = 0.01,
maxPS = 0.99,
higher.y = TRUE,
prop.cutoff = seq(0.5, 1, length = 6),
xvar.smooth.score = NULL,
xvar.smooth.init = NULL,
tree.depth = 2,
n.trees.rf = 1000,
n.trees.boosting = 200,
B = 3,
Kfold = 6,
plot.gbmperf = FALSE,
error.maxNR = 1e-3,
tune = c(0.5, 2),
seed = NULL,
verbose = 0,
...) {
stop("This functionality is not implemented yet")
# TODO: score.method is now a mandatory argument
# Set seed once for reproducibility
set.seed(seed)
if (verbose >= 1) t.start <- Sys.time()
#### CHECK ARGUMENTS ####
arg.checks(
fun = "catefit", response = "continuous", data = data, higher.y = higher.y, score.method = score.method, prop.cutoff = prop.cutoff,
ps.method = ps.method, minPS = minPS, maxPS = maxPS,
initial.predictor.method = initial.predictor.method,
tree.depth = tree.depth, n.trees.boosting = n.trees.boosting, B = B, Kfold = Kfold, plot.gbmperf = plot.gbmperf,
error.maxNR = error.maxNR, tune = tune
)
#### PRE-PROCESSING ####
out <- data.preproc.mean(fun = "catefit", cate.model = cate.model, init.model = init.model, ps.model = ps.model,
score.method = score.method, data = data, prop.cutoff = prop.cutoff, ps.method = ps.method)
y <- out$y
trt <- out$trt
x.ps <- out$x.ps
x.cate <- out$x.cate
prop <- out$prop
if (any(score.method %in% c("contrastReg", "twoReg"))) x.init <- out$x.init
#### FUNCTION STARTS HERE ####
result <- vector("list", length(score.method) * 2 + 2)
names(result) <- c(paste0("ate.", score.method),
paste0("score.", score.method), "fit", "coefficients")
fit <- intxmean(y = y, trt = trt, x.cate = x.cate, x.init = x.init, x.ps = x.ps,
score.method = score.method,
ps.method = ps.method, minPS = minPS, maxPS = maxPS,
initial.predictor.method = initial.predictor.method,
xvar.smooth.init = xvar.smooth.init, xvar.smooth.score = xvar.smooth.score,
tree.depth = tree.depth, n.trees.rf = n.trees.rf, n.trees.boosting = n.trees.boosting,
Kfold = Kfold, B = B, plot.gbmperf = plot.gbmperf,
error.maxNR = error.maxNR, tune = tune, ...)
if (fit$best.iter == n.trees.boosting) {
warning(paste("The best boosting iteration was iteration number", n.trees.boosting, " out of ", n.trees.boosting, ". Consider increasing the maximum number of trees and turning on boosting performance plot (plot.gbmperf = TRUE).", sep = ""))
}
# Check NA in coefficients of the score
if ("gaussian" %in% score.method & sum(is.na(fit$result.gaussian)) > 0) {
warning("One or more coefficients in the score (Gaussian) are NA.
Consider inspecting the distribution of the covariates in cate.model.")
}
if ("twoReg" %in% score.method & sum(is.na(fit$result.twoReg)) > 0) {
warning("One or more coefficients in the score (two regressions) are NA.
Consider inspecting the distribution of the covariates in cate.model.")
}
if ("contrastReg" %in% score.method & sum(is.na(fit$result.contrastReg)) > 0) {
warning("One or more coefficients in the score (contrast regression) are NA.
Consider inspecting the distribution of the covariates in cate.model.")
}
if (length(names(fit$err.fit)) > 0) {
score.method.updated <- score.method[-which(score.method %in% names(fit$err.fit))]
} else {score.method.updated <- score.method}
# score.method.updated <- score.method[-which(score.method %in% names(fit$err.fit))]
if (length(score.method.updated) == 0) {stop("All methods produced error in fitting.")}
fit.score <- scoremean(fit = fit,
x.cate = x.cate,
score.method = score.method.updated)
for (name in names(fit.score)) {
score <- fit.score[[name]]
result[[name]] <- score
ate <- estmean.bilevel.subgroups(y = y,
x.cate = x.cate, x.ps = x.ps,
trt = trt,
score = score, higher.y = higher.y,
prop = prop, onlyhigh = TRUE,
ps.method = ps.method, minPS = minPS, maxPS = maxPS)
result[[str_replace(name, "score", "ate")]] <- ate
names(result[[str_replace(name, "score", "ate")]]) <- paste0("prop", round(prop, 2))
}
if (sum(score.method %in% c("gaussian", "twoReg", "contrastReg")) > 0) {
cf <- data.frame(matrix(NA, nrow = ncol(x.cate) + 1, ncol = 4))
colnames(cf) <- c("gaussian", "twoReg", "contrastReg", "SE_contrastReg")
rownames(cf) <- c("(Intercept)", colnames(x.cate))
if ("gaussian" %in% score.method) cf$gaussian <- fit$result.gaussian
if ("twoReg" %in% score.method) cf$twoReg <- fit$result.twoReg
if ("contrastReg" %in% score.method) {
cf$contrastReg <- fit$result.contrastReg$delta.contrastReg
cf$SE_contrastReg <- sqrt(diag(fit$result.contrastReg$sigma.contrastReg))
}
result$coefficients <- cf[, colSums(is.na(cf)) != nrow(cf), drop = FALSE]
}
if (any(is.na(unlist(result[str_replace(names(fit.score), "score", "ate")])))) {
warning("Missing log rate ratio detected due to negative doubly robust estimator of y|x
for one or both treatment group(s).")
}
if ("boosting" %in% score.method) result$fit$result.boosting <-
fit$result.boosting
if ("randomForest" %in% score.method) result$fit$result.randomForest <-
fit$result.randomForest
if ("gam" %in% score.method) result$fit$result.gam <-
fit$result.gam
if ("contrastReg" %in% score.method) result$fit$result.contrastReg$sigma.contrastReg <-
fit$result.contrastReg$sigma.contrastReg
if (verbose >= 1) {
t.end <- Sys.time()
t.diff <- round(difftime(t.end, t.start),2)
cat('Total runtime :',as.numeric(t.diff), attributes(t.diff)$units, '\n')
}
result$score.method <- score.method
class(result) <- "catefit"
return(result)
}
#' Doubly robust estimators of the coefficients in the two regression
#'
#' @param y Observed outcome; vector of size \code{n}
#' @param x.cate Matrix of \code{p} baseline covariates; dimension \code{n} by \code{p}
#' @param trt Treatment received; vector of size \code{n} units with treatment coded as 0/1
#' @param ps Estimated propensity scores for all observations; vector of size \code{n}
#' @param f.predictor Initial prediction of the outcome (expected number of relapses for one unit of exposure time) conditioned
#' on the covariates \code{x} for one treatment group \code{r}; \code{mu_r(x)}, step 1 in the two regression; vector of size \code{n}
#'
#' @return Doubly robust estimators of the regression coefficients \code{beta_r} in the doubly robust estimating equation
#' where \code{r = 0, 1} is treatment received; vector of size \code{p} + 1 (intercept included)
#' @importFrom stats lm
##onearmglmmean.dr <- function(y, x.cate, trt, ps, f.predictor) {
## f.predictor <- as.vector(f.predictor)
## x <- as.matrix(cbind(1, (f.predictor), x.cate))
## withCallingHandlers({
## fit <- glm(y ~ (f.predictor) + x.cate, family = "gaussian", weights = trt / ps)
## beta <- fit$coef
## yhat <- (as.matrix(x[, is.na(beta) == FALSE, drop = FALSE]) %*% beta[is.na(beta) == FALSE])
## fit2 <- glm(yhat ~ x.cate, family = "gaussian")
## },
## warning = function(w) { # don't change the = to <- in withCallingHandlers
## if (grepl("non-integer", conditionMessage(w)))
## invokeRestart("muffleWarning") # suppress warnings in glm(): "In dpois(y, mu, log = TRUE) : non-integer x = 0.557886."
## })
## return(fit2$coef)
##}
onearmglmmean.dr <- function(y, x.cate, trt, ps, f.predictor){
f.predictor <- as.vector(f.predictor)
# first, solve the weighted estimating equation in twin regression (second estimating equation with the weights). Because the weights are trt/ps, only patients who are treated are used (or untreated if trt=1-trt)
fit <- lm(y ~ f.predictor+x.cate, weights = trt/ps)
# second, derive the “calibrated” prediction
coef.one <- fit$coef
x.aug.one <- cbind(1, f.predictor, x.cate)
yhat <- x.aug.one[, is.na(coef.one) == FALSE] %*% coef.one[is.na(coef.one) == FALSE]
# solve the twin regression estimating equation (without weight)
fit2 <- lm(yhat ~ x.cate)
beta <- fit2$coef
return(beta)
}
#' Doubly robust estimators of the coefficients in the contrast regression
#' as well as their covariance matrix
#'
#' Solving the estimating equation \code{bar S_n (delta) = 0}
#'
#' @param y Observed outcome; vector of size \code{n}
#' @param x.cate Matrix of \code{p.cate} baseline covariates; dimension \code{n} by \code{p.cate}
#' @param trt Treatment received; vector of size \code{n} units with treatment coded as 0/1
#' @param ps Estimated propensity scores for all observations; vector of size \code{n}
#' @param f1.predictor Initial predictions of the outcome (expected number of relapses for one unit of exposure time)
#' conditioned on the covariates \code{x} for treatment group trt = 1; \code{mu_1(x)}, step 1 in the two regression; vector of size \code{n}
#' @param f0.predictor Initial predictions of the outcome (expected number of relapses for one unit of exposure time)
#' conditioned on the covariates \code{x} for treatment group trt = 0; \code{mu_0(x)}, step 1 in the two regression; vector of size \code{n}
#' @return coef: Doubly robust estimators of the regression coefficients \code{delta_0}; vector of size \code{p} + 1 (intercept included)
#' vcov: Variance-covariance matrix of the estimated coefficient \code{delta_0}; matrix of size \code{p} + 1 by \code{p} + 1
#' @importFrom stats lm
twoarmglmmean.dr <- function(y, x.cate, trt, ps, f1.predictor, f0.predictor){
#ps=resultcf$ps
#f1.predictor=resultcf$f1.predictor
#f0.predictor=resultcf$f0.predictor
fbar.predictor <- (f1.predictor + f0.predictor) / 2
resid <- y - fbar.predictor
x.aug <- cbind(1, x.cate)
xaug.star <- x.aug * (trt + ps - 2 * trt * ps) / 2
# (1-ps)/2 when trt = 0, ps/2 when trt = 1
outcome <- resid * (trt - ps) # (1-ps) when trt = 1, -ps when trt = 0
fit <- lm(outcome ~ xaug.star - 1) # omitting intercept
beta <- fit$coef
###### estimate the variance of the weights in ITR score 4 sandwich estimator
error <- fit$res
slope <- t(xaug.star) %*% xaug.star
#sigma=solve(slope)%*%(t(xaug.star*error^2)%*%xaug.star)%*%solve(slope)
sigma <- MASS::ginv(slope) %*% (t(xaug.star*error^2) %*% xaug.star) %*% MASS::ginv(slope)
return(list(coef = beta, vcov = sigma))
}
#' Estimate the CATE model using specified scoring methods
#'
#' Coefficients of the CATE estimated with boosting, linear regression, two regression, contrast regression, random forest, generalized additive model
#'
#' @param y Observed outcome; vector of size \code{n} (observations)
#' @param x.cate Matrix of \code{p.cate} baseline covariates; dimension \code{n} by \code{p.cate} (covariates in the outcome model)
#' @param x.init Matrix of \code{p.init} baseline covariates; dimension \code{n} by \code{p.init}
#' It must be specified when \code{score.method = contrastReg} or \code{twoReg}.
#' @param x.ps Matrix of \code{p.ps} baseline covariates (plus a leading column of 1 for the intercept);
#' dimension \code{n} by \code{p.ps + 1} (covariates in the propensity score model plus intercept)
#' @param trt Treatment received; vector of size \code{n} units with treatment coded as 0/1
#' @param score.method A vector of one or multiple methods to estimate the CATE score.
#' Allowed values are: \code{'boosting'}, \code{'gaussian'}, \code{'twoReg'}, \code{'contrastReg'},
#' \code{'randomForest'}, \code{'gam'}. Default specifies all 6 methods.
#' @param ps.method A character value for the method to estimate the propensity score.
#' Allowed values include one of:
#' \code{'glm'} for logistic regression with main effects only (default), or
#' \code{'lasso'} for a logistic regression with main effects and LASSO penalization on
#' two-way interactions (added to the model if interactions are not specified in \code{ps.model}).
#' Relevant only when \code{ps.model} has more than one variable.
#' @param minPS A numerical value (in `[0, 1]`) below which estimated propensity scores should be
#' truncated. Default is \code{0.01}.
#' @param maxPS A number above which estimated propensity scores should be trimmed; scalar
#' @param initial.predictor.method A character vector for the method used to get initial
#' outcome predictions conditional on the covariates in \code{cate.model}
#' in \code{score.method = 'twoReg'} and \code{'contrastReg'}. Allowed values include
#' one of \code{'gaussian'} (fastest), \code{'boosting'} (default) and \code{'gam'}.
#' @param xvar.smooth.init A vector of characters indicating the name of the variables used as
#' the smooth terms if \code{initial.predictor.method = 'gam'}. The variables must be selected
#' from the variables listed in \code{init.model}.
#' Default is \code{NULL}, which uses all variables in \code{init.model}.
#' @param xvar.smooth.score A vector of characters indicating the name of the variables used as
#' the smooth terms if \code{score.method = 'gam'}. The variables must be selected
#' from the variables listed in \code{cate.model}.
#' Default is \code{NULL}, which uses all variables in \code{cate.model}.
#' @param tree.depth A positive integer specifying the depth of individual trees in boosting
#' (usually 2-3). Used only if \code{score.method = 'boosting'} or
#' if \code{score.method = 'twoReg'} or \code{'contrastReg'} and
#' \code{initial.predictor.method = 'boosting'}. Default is \code{2}.
#' @param n.trees.rf A positive integer specifying the number of trees. Used only if
#' \code{score.method = 'randomForest'}. Default is \code{1000}.
#' @param n.trees.boosting A positive integer specifying the maximum number of trees in boosting
#' (usually 100-1000). Used only if \code{score.method = 'boosting'} or
#' if \code{score.method = 'twoReg'} or \code{'contrastReg'} and
#' \code{initial.predictor.method = 'boosting'}. Default is \code{200}.
#' @param B A positive integer specifying the number of time cross-fitting is repeated in
#' \code{score.method = 'twoReg'} and \code{'contrastReg'}. Default is \code{3}.
#' @param Kfold A positive integer specifying the number of folds (parts) used in cross-fitting
#' to partition the data in \code{score.method = 'twoReg'} and \code{'contrastReg'}.
#' Default is \code{6}.
#' @param plot.gbmperf A logical value indicating whether to plot the performance measures in
#' boosting. Used only if \code{score.method = 'boosting'} or if \code{score.method = 'twoReg'}
#' or \code{'contrastReg'} and \code{initial.predictor.method = 'boosting'}. Default is \code{TRUE}.
#' @param ... Additional arguments for \code{gbm()}
#'
#' @return Depending on what score.method is, the outputs is a combination of the following:
#' result.boosting: Results of boosting fit and best iteration, for trt = 0 and trt = 1 separately
#' result.gaussian: Linear regression estimator (beta1 - beta0); vector of length \code{p.cate} + 1
#' result.twoReg: Two regression estimator (beta1 - beta0); vector of length \code{p.cate} + 1
#' result.contrastReg: A list of the contrast regression results with 3 elements:
#' $delta.contrastReg: Contrast regression DR estimator; vector of length \code{p.cate} + 1
#' $sigma.contrastReg: Variance covariance matrix for delta.contrastReg; matrix of size \code{p.cate} + 1 by \code{p.cate} + 1
#' result.randomForest: Results of random forest fit and best iteration, for trt = 0 and trt = 1 separately
#' result.gam: Results of generalized additive model fit and best iteration, for trt = 0 and trt = 1 separately
#' best.iter: Largest best iterations for boosting (if used)
#' fgam: Formula applied in GAM when \code{initial.predictor.method = 'gam'}
#' warn.fit: Warnings occurred when fitting \code{score.method}
#' err.fit:: Errors occurred when fitting \code{score.method}
intxmean <- function(y, trt, x.cate, x.init, x.ps,
score.method = c("boosting", "gaussian", "twoReg", "contrastReg", "gam", "randomForest"),
ps.method = "glm", minPS = 0.01, maxPS = 0.99,
initial.predictor.method = "boosting",
xvar.smooth.init, xvar.smooth.score,
tree.depth = 2, n.trees.rf = 1000, n.trees.boosting = 200, B = 1, Kfold = 2, plot.gbmperf = TRUE, ...) {
result <- vector("list", length(score.method) + 1)
names(result) <- c(paste0("result.", score.method), "best.iter")
# Calculate the total number of patients who received the treatment (N1)
# and the total number of patients who did not receive the treatment (N0)
N1 <- sum(trt) # N1: number of treated patients (trt = 1)
N0 <- length(trt) - N1 # N0: number of untreated patients (trt = 0)
# Total number of patients
N <- length(trt) # N is simply the total number of patients
# Calculate p.aug: the number of covariates in x.cate plus 1 for the intercept
p.aug <- ncol(x.cate) + 1
datatot <- data.frame("y" = y, x.cate)
datatot.init <- data.frame("y" = y, x.init)
######### cross-fitting
# Generate indices for N1 (normal order) and N0 (reverse order)
index1 <- generate_kfold_indices(N1, Kfold, reverse = FALSE)
index0 <- generate_kfold_indices(N0, Kfold, reverse = TRUE)
delta.twoReg.mat <- delta.contrastReg.mat <- matrix(NA, B, p.aug)
sigma.contrastReg.mat <- matrix(0, p.aug, p.aug)
converge <- rep(NA, B)
best.iter <- 0
fgam.init <- NULL
#warn.high <- err.high <- vector("list", length = n.subgroup)
#names(warn.high) <- names(err.high) <- paste("prop", round(prop, 2))
warn.fit <- err.fit <- list()
if (any(c("twoReg", "contrastReg") %in% score.method)) {
for (bb in 1:B) {
index1cv <- sample(x = index1, size = N1, replace = FALSE)
index0cv <- sample(x = index0, size = N0, replace = FALSE)
index <- rep(NA, N)
index[trt == 1] <- index1cv
index[trt == 0] <- index0cv
f1.predictcv <- f0.predictcv <- pscv <- rep(NA, N)
for (k in 1:Kfold) {
datatot_train <- datatot[index != k, ]
datatot_train_init <- datatot.init[index != k, ]
x_ps_train <- x.ps[index != k, , drop = FALSE]
trt_train <- trt[index != k]
datatot_valid <- datatot[index == k, ]
datatot_valid_init <- datatot.init[index == k,]
x_ps_valid <- x.ps[index == k, , drop = FALSE]
data1 <- datatot_train[trt_train == 1, ]
data0 <- datatot_train[trt_train == 0, ]
data1.init <- datatot_train_init[trt_train == 1, ]
data0.init <- datatot_train_init[trt_train == 0, ]
if (initial.predictor.method == "boosting") {
# TODO: if model has a single predictor, GBM must have cv.folds = 0 https://github.com/zoonproject/zoon/issues/130
## Removed offset
fit1.boosting <- gbm(y ~ ., data = data1.init, distribution = "gaussian",
interaction.depth = tree.depth, n.trees = n.trees.boosting, cv.folds = 5)
best1.iter <- max(10, gbm.perf(fit1.boosting, method = "cv", plot.it = plot.gbmperf))
withCallingHandlers({
f1.predictcv[index == k] <- predict(object = fit1.boosting, newdata = datatot_valid_init, n.trees = best1.iter, type = "response")
},
## Comment out here.
warning = function(w) {
if (grepl("does not add the offset", conditionMessage(w)))
invokeRestart("muffleWarning") # suppress warning: "predict.gbm does not add the offset to the predicted values."
})
fit0.boosting <- gbm(y ~ ., data = data0.init, distribution = "gaussian",
interaction.depth = tree.depth, n.trees = n.trees.boosting, cv.folds = 5)
best0.iter <- max(10, gbm.perf(fit0.boosting, method = "cv", plot.it = plot.gbmperf))
withCallingHandlers({
f0.predictcv[index == k] <- predict(object = fit0.boosting, newdata = datatot_valid_init, n.trees = best0.iter, type = "response")
},
warning = function(w) {
if (grepl("does not add the offset", conditionMessage(w)))
invokeRestart("muffleWarning") # suppress warning: "predict.gbm does not add the offset to the predicted values."
})
best.iter <- max(best.iter, best1.iter, best0.iter)
##Changed poisson to gaussian
} else if (initial.predictor.method == "gaussian") {
fit1.gaus <- glm(y ~ ., data = data1.init, family = "gaussian")
datatot_valid_new <- datatot_valid_init
datatot_valid_new[, "y"] <- rep(1, nrow(datatot_valid_new))
names(datatot_valid_new[which(names(datatot_valid_new) == "y")]) <- "intercept"
f1.predictcv[index == k] <- as.matrix(datatot_valid_new[, is.na(fit1.gaus$coefficients) == FALSE]) %*% fit1.gaus$coefficients[is.na(fit1.gaus$coefficients) == FALSE]
fit0.gaus <- glm(y ~ ., data = data0.init, family = "gaussian")
datatot_valid_new <- datatot_valid_init
datatot_valid_new[, "y"] <- rep(1, nrow(datatot_valid_new))
names(datatot_valid_new[which(names(datatot_valid_new) == "y")]) <- "intercept"
f0.predictcv[index == k] <- as.matrix(datatot_valid_new[, is.na(fit0.gaus$coefficients) == FALSE]) %*% fit0.gaus$coefficients[is.na(fit0.gaus$coefficients) == FALSE]
} else if (initial.predictor.method == "gam") {
xvars <- colnames(x.init)
if (is.null(xvar.smooth.init)){
fgam.init <- paste0("y ~ ", paste0("s(", xvars, ")", collapse = "+"))
} else {
xvar.smooth2.init <- xvars[stringr::str_detect(xvars, paste(paste0(xvar.smooth.init, "$"), collapse = "|"))] # conver to the preprocessed names
xvar.linear.init <- setdiff(xvars, xvar.smooth2.init) # the remaining xvars in x.cate but not in xvar.smooth are linear predictors
fgam.init <- paste0("y ~ ", paste0(xvar.linear.init, collapse = "+"), "+", paste0("s(", xvar.smooth2.init, ")", collapse = "+"))
}
## changed poisson to gaussian, removed offset option
fit1.gam.init <- mgcv::gam(as.formula(fgam.init), data = data1.init, family = "gaussian")
f1.predictcv[index == k] <- predict(object = fit1.gam.init, newdata = datatot_valid, type = "response")
fit0.gam.init <- mgcv::gam(as.formula(fgam.init), data = data0.init, family = "gaussian")
f0.predictcv[index == k] <- predict(object = fit0.gam.init, newdata = datatot_valid, type = "response")
}
if (ps.method == "glm") {
pscv[index == k] <- glm.simplereg.ps(x.ps = x_ps_train, trt = trt_train, xnew = x_ps_valid, minPS = minPS, maxPS = maxPS)
} else {
pscv[index == k] <- glm.ps(x.ps = x_ps_train, trt = trt_train, xnew = x_ps_valid, minPS = minPS, maxPS = maxPS)
}
}#end of Kfold loops
if ("twoReg" %in% score.method) {
## bb-th cross fitting two regression estimator
## Replace count function to mean
beta1.final <- onearmglmmean.dr(y = y, x.cate = x.cate, trt = trt, ps = pscv, f.predictor = f1.predictcv)
beta0.final <- onearmglmmean.dr(y = y, x.cate = x.cate, trt = 1 - trt, ps = 1 - pscv, f.predictor = f0.predictcv)
delta.twoReg.mat[bb, ] <- as.vector(beta1.final - beta0.final)
}#end of if ("twoReg" %in% score.method)
## if ("contrastReg" %in% score.method) {
## ## bb-th cross fitting contrast regression estimator
## fit_two <- twoarmglmmean.dr(y = y, x.cate = x.cate, trt = trt, ps = pscv,
## f1.predictor = f1.predictcv, f0.predictor = f0.predictcv,
## error.maxNR = error.maxNR, max.iterNR = max.iterNR, tune = tune)
## delta.contrastReg.mat[bb, ] <- fit_two$coef
## converge[bb] <- fit_two$converge
## if(converge[bb] == TRUE) sigma.contrastReg.mat <- sigma.contrastReg.mat + fit_two$vcov
## }#end of if ("contrastReg" %in% score.method)
if ("contrastReg" %in% score.method) {
## bb-th cross fitting contrast regression estimator
fit_two <- twoarmglmmean.dr(y = y, x.cate = x.cate, trt = trt, ps = pscv,
f1.predictor = f1.predictcv, f0.predictor = f0.predictcv)
delta.contrastReg.mat[bb, ] <- fit_two$coef
# converge[bb] <- fit_two$converge
# if(converge[bb] == TRUE) sigma.contrastReg.mat <- sigma.contrastReg.mat + fit_two$vcov
sigma.contrastReg.mat <- sigma.contrastReg.mat + fit_two$vcov
}#end of if ("contrastReg" %in% score.method)
}#end of B loops
}#end of if c("twoReg", "contrastReg") %in% score.method
if ("boosting" %in% score.method) {
## Boosting method based on the entire data (score 1)
data1.boosting <- datatot[trt == 1, ]
# TODO: if model has a single predictor, GBM must have cv.folds = 0 https://github.com/zoonproject/zoon/issues/130
##Changed poisson to gaussian, removed offset term
fit1.boosting <- meanCatch(gbm(y ~ ., data = data1.boosting, distribution = "gaussian",
interaction.depth = tree.depth, n.trees = n.trees.boosting, cv.folds = 5))
if (length(fit1.boosting$errors) > 0){
best1.iter <- NA
} else{
best1.iter <- max(10, gbm.perf(fit1.boosting$fit, method = "cv", plot.it = plot.gbmperf))
}
data0.boosting <- datatot[trt == 0, ]
fit0.boosting <- meanCatch( gbm(y ~ ., data = data0.boosting, distribution = "gaussian",
interaction.depth = tree.depth, n.trees = n.trees.boosting, cv.folds = 5))
if (length(fit0.boosting$errors) > 0){
best0.iter <- NA
} else{
best0.iter <- max(10, gbm.perf(fit0.boosting$fit, method = "cv", plot.it = plot.gbmperf))
}
result$result.boosting <- list(fit1.boosting = fit1.boosting$fit, fit0.boosting = fit0.boosting$fit)
temp.iter <- c(best.iter, best1.iter, best0.iter)
temp.iter <- temp.iter[!is.na(temp.iter)]
if (length(temp.iter) == 0){best.iter <- NA} else {best.iter <- max(temp.iter)}
warn.fit[["boosting"]] <- append(fit1.boosting$warnings, fit0.boosting$warnings)
err.fit[["boosting"]] <- append(fit1.boosting$errors, fit0.boosting$errors)
}
##changed poisson to gaussian
if ("gaussian" %in% score.method) {
## Naive Poisson regression method (score 2)
beta1.ini <- glm(y ~ x.cate, family = "gaussian", subset = (trt == 1))$coef
beta0.ini <- glm(y ~ x.cate, family = "gaussian", subset = (trt == 0))$coef
delta.gaussian <- beta1.ini - beta0.ini
names(delta.gaussian) <- c("(Intercept)", colnames(x.cate))
result$result.gaussian <- delta.gaussian
}
##TODO: Try to give message when there are not enough observations
if ("gam" %in% score.method) {
xvars <- colnames(x.cate)
if (is.null(xvar.smooth.score) == TRUE){
fgam.score <- paste0("y ~ ", paste0("s(", xvars, ")", collapse = "+"))
} else {
xvar.smooth2.score <- xvars[stringr::str_detect(xvars, paste(paste0(xvar.smooth.score, "$"), collapse = "|"))] # conver to the preprocessed names
xvar.linear.score <- setdiff(xvars, xvar.smooth2.score) # the remaining xvars in x.cate but not in xvar.smooth are linear predictors
fgam.score <- paste0("y ~ ", paste0(xvar.linear.score, collapse = "+"), "+", paste0("s(", xvar.smooth2.score, ")", collapse = "+"))
}
data1.gam.cate<- datatot[trt == 1, ]
data0.gam.cate <- datatot[trt == 0, ]
fit1.gam.cate <- meanCatch( mgcv::gam(as.formula(fgam.score), data = data1.gam.cate, family = "gaussian"))
fit0.gam.cate <- meanCatch( mgcv::gam(as.formula(fgam.score), data = data0.gam.cate, family = "gaussian"))
result$result.gam <- list(fit1.gam = fit1.gam.cate$fit, fit0.gam = fit0.gam.cate$fit)
warn.fit[["gam"]] <- append(fit1.gam.cate$warnings, fit0.gam.cate$warnings)
err.fit[["gam"]] <- append(fit1.gam.cate$errors, fit0.gam.cate$errors)
}
if ("randomForest" %in% score.method) {
data1.rf <- datatot[trt == 1, ]
data0.rf <- datatot[trt == 0, ]
fit1.rf <- meanCatch(randomForestSRC::rfsrc(y ~ ., data = data1.rf, ntree = n.trees.rf))
fit0.rf <- meanCatch(randomForestSRC::rfsrc(y ~ ., data = data0.rf, ntree = n.trees.rf))
result$result.randomForest <- list(fit1.rf = fit1.rf$fit, fit0.rf = fit0.rf$fit)
warn.fit[["randomForest"]] <- append(fit1.rf$warnings, fit0.rf$warnings)
err.fit[["randomForest"]] <- append(fit1.rf$errors, fit0.rf$errors)
}
if ("twoReg" %in% score.method) {
## Final two regression estimator (score 3)
delta.twoReg <- colMeans(delta.twoReg.mat)
names(delta.twoReg) <- c("(Intercept)", colnames(x.cate))
result$result.twoReg <- delta.twoReg
}
if ("contrastReg" %in% score.method) {
## Final contrast regression estimator (score 4)
# converge.contrastReg <- (sum(converge) > 0)
# if(converge.contrastReg == TRUE){
# delta.contrastReg <- colMeans(delta.contrastReg.mat[converge == TRUE, , drop = FALSE])
# sigma.contrastReg <- sigma.contrastReg.mat/sum(converge)
# } else {
# delta.contrastReg <- colMeans(delta.contrastReg.mat)
# sigma.contrastReg <- sigma.contrastReg.mat
# }
delta.contrastReg <- colMeans(delta.contrastReg.mat[, , drop = FALSE])
sigma.contrastReg <- sigma.contrastReg.mat/B
names(delta.contrastReg) <- colnames(sigma.contrastReg) <- rownames(sigma.contrastReg) <- c("(Intercept)", colnames(x.cate))
result$result.contrastReg <- list(delta.contrastReg = delta.contrastReg,
sigma.contrastReg = sigma.contrastReg
# #converge.contrastReg = converge.contrastReg
)
}
result$best.iter <- best.iter
result$fgam <- fgam.init
result$warn.fit <- warn.fit
result$err.fit <- err.fit
return(result)
}
#' Calculate the CATE score given the baseline covariates for specified scoring method methods
#'
#' Based on intxmean results of the CATE coefficients estimated with boosting, linear regression, two regression, contrast regression, random forest, generalized additive model
#'
#' @param fit List of objects generated from intxmean: outputs of boosting, linear regression, two regression, contrast regression, random forest, generalized additive model
#' @param x.cate Matrix of \code{p.cate} baseline covariates; dimension \code{n} (observations) by \code{p.cate} (covariates in the outcome model)
#' @param score.method A vector of one or multiple methods to estimate the CATE score.
#' Allowed values are: \code{'boosting'}, \code{'gaussian'}, \code{'twoReg'}, \code{'contrastReg'}, \code{'randomForest'}, \code{'gam'}.
#' Default specifies all 6 methods.
#'
#' @return score.boosting: Estimated CATE score for all \code{n} observations with the boosting method; vector of size \code{n}
#' score.gaussian: Estimated CATE score for all \code{n} observations with the linear regression method; vector of size \code{n}
#' score.twoReg: Estimated CATE score for all \code{n} observations with the two regression method; vector of size \code{n}
#' score.contrastReg: Estimated CATE score for all \code{n} observations with the contrast regression method; vector of size \code{n}
#' score.randomForest: Estimated CATE score for all \code{n} observations with the random forest method; vector of size \code{n}
#' score.gam: Estimated CATE score for all \code{n} observations with the generalized additive model; vector of size \code{n}
#' score = NA if the corresponding method is not called
scoremean <- function(fit, x.cate,
score.method = c("boosting", "gaussian", "twoReg", "contrastReg", "randomForest", "gam")) {
result <- vector("list", length(score.method))
names(result) <- paste0("score.", score.method)
x.aug <- cbind(1, x.cate)
if ("boosting" %in% score.method) {
fit0.boosting <- fit$result.boosting$fit0.boosting
best0.iter <- fit$result.boosting$best0.iter
fit1.boosting <- fit$result.boosting$fit1.boosting
best1.iter <- fit$result.boosting$best1.iter
datanew <- data.frame(x = x.cate)
colnames(datanew) <- c(colnames(x.cate))
suppressMessages({
predict0 <- predict(object = fit0.boosting, newdata = datanew, n.trees = best0.iter)
predict1 <- predict(object = fit1.boosting, newdata = datanew, n.trees = best1.iter)
},
classes = "message")
result$score.boosting <- predict1 - predict0
}
if ("gaussian" %in% score.method) {
delta.gaussian <- fit$result.gaussian
result$score.gaussian <- as.numeric(as.matrix(x.aug[,is.na(delta.gaussian) == FALSE]) %*% delta.gaussian[is.na(delta.gaussian) == FALSE])
}
if ("twoReg" %in% score.method) {
delta.twoReg <- fit$result.twoReg
result$score.twoReg <- as.numeric(as.matrix(x.aug[,is.na(delta.twoReg) == FALSE]) %*% delta.twoReg[is.na(delta.twoReg) == FALSE])
}
if ("contrastReg" %in% score.method) {
delta.contrastReg <- fit$result.contrastReg$delta.contrastReg
result$score.contrastReg <- as.numeric(as.matrix(x.aug[,is.na(delta.contrastReg) == FALSE]) %*% delta.contrastReg[is.na(delta.contrastReg) == FALSE])
}
if ("gam" %in% score.method) {
fit0.gam <- fit$result.gam$fit0.gam
fit1.gam <- fit$result.gam$fit1.gam
datanew <- data.frame(x = x.cate)
colnames(datanew) <- c(colnames(x.cate))
predict0 <- predict(object = fit0.gam, newdata = datanew)
predict1 <- predict(object = fit1.gam, newdata = datanew)
result$score.gam <- predict1 - predict0
}
if ("randomForest" %in% score.method) {
fit0.rf <- fit$result.randomForest$fit0.rf
fit1.rf <- fit$result.randomForest$fit1.rf
datanew <- data.frame(x = x.cate)
colnames(datanew) <- c(colnames(x.cate))
predict0 <- predict(object = fit0.rf, newdata = datanew)$predicted
predict1 <- predict(object = fit1.rf, newdata = datanew)$predicted
result$score.randomForest <- predict1 - predict0
}
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.