Nothing
test_that("raster features (linear)", {
# load data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
# enlarge spatial extent
terra::ext(sim_pu_raster) <- c(0, 1e5, 0, 1e5)
terra::ext(sim_features) <- terra::ext(sim_pu_raster)
# create problem
p <- problem(sim_pu_raster, sim_features)
# compute values in km^2
fa <- p$feature_abundances_in_total_units()
# create problem
p <-
p %>%
add_auto_targets(
method = spec_interp_absolute_targets(
rare_absolute_threshold = 30,
rare_relative_target = 0.4,
rare_absolute_target = 20,
rare_method = "max",
common_absolute_threshold = 50,
common_relative_target = 0.1,
common_absolute_target = 60,
common_method = "min",
cap_absolute_target = 70,
interp_method = "linear"
)
)
# calculate targets
targets <- p$targets$output(p)
# calculate correct targets
## run interpolation with relative targets
correct_targets <- c(fa) * linear_interpolation(fa, 30, 0.4, 50, 0.1)
## apply absolute targets
idx <- fa < 30
correct_targets[idx] <- pmax(correct_targets[idx], 20)
idx <- fa > 50
correct_targets[idx] <- pmin(correct_targets[idx], 60)
## apply target caps
correct_targets <- pmin(correct_targets, 70)
correct_targets <- pmin(correct_targets, fa)
# run tests
print(p)
expect_inherits(targets, "tbl_df")
expect_true(all(names(targets) == c("feature", "zone", "sense", "value")))
expect_inherits(targets$feature, "integer")
expect_inherits(targets$zone, "list")
expect_inherits(targets$value, "numeric")
expect_inherits(targets$sense, "character")
expect_equal(targets$feature, seq_len(terra::nlyr(sim_features)))
expect_equal(unlist(targets$zone), rep(1, terra::nlyr(sim_features)))
expect_equal(targets$value, correct_targets)
expect_equal(targets$sense, rep(">=", terra::nlyr(sim_features)))
})
test_that("raster features (loglinear)", {
# load data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
# enlarge spatial extent
terra::ext(sim_pu_raster) <- c(0, 1e5, 0, 1e5)
terra::ext(sim_features) <- terra::ext(sim_pu_raster)
# create problem
p <- problem(sim_pu_raster, sim_features)
# compute values in km^2
fa <- p$feature_abundances_in_total_units()
# create problem
p <-
p %>%
add_auto_targets(
method = spec_interp_absolute_targets(
rare_absolute_threshold = 30,
rare_relative_target = 0.4,
rare_absolute_target = 20,
rare_method = "min",
common_absolute_threshold = 50,
common_relative_target = 0.1,
common_absolute_target = 60,
common_method = "max",
cap_absolute_target = 70,
interp_method = "log10"
)
)
# calculate targets
targets <- p$targets$output(p)
# calculate correct targets
## run interpolation with relative targets
correct_targets <- c(fa) * loglinear_interpolation(fa, 30, 0.4, 50, 0.1)
## apply absolute targets
idx <- fa < 30
correct_targets[idx] <- pmin(correct_targets[idx], 20)
idx <- fa > 50
correct_targets[idx] <- pmax(correct_targets[idx], 60)
## apply target caps
correct_targets <- pmin(correct_targets, 70)
correct_targets <- pmin(correct_targets, fa)
# run tests
print(p)
expect_inherits(targets, "tbl_df")
expect_true(all(names(targets) == c("feature", "zone", "sense", "value")))
expect_inherits(targets$feature, "integer")
expect_inherits(targets$zone, "list")
expect_inherits(targets$value, "numeric")
expect_inherits(targets$sense, "character")
expect_equal(targets$feature, seq_len(terra::nlyr(sim_features)))
expect_equal(unlist(targets$zone), rep(1, terra::nlyr(sim_features)))
expect_equal(targets$value, correct_targets)
expect_equal(targets$sense, rep(">=", terra::nlyr(sim_features)))
})
test_that("non-raster features (linear)", {
# load data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
sim_data <- terra::as.data.frame(c(sim_pu_raster, sim_features))
names(sim_data) <-
c("cost", paste0("ft_", seq_len(terra::nlyr(sim_features))))
sim_data$id <- seq_len(nrow(sim_data))
# create problem
p <- problem(
sim_data,
paste0("ft_", seq_len(terra::nlyr(sim_features))),
cost_column = "cost"
)
# compute values in km^2
fa <- c(p$feature_abundances_in_total_units())
# create problem
p <-
p %>%
add_auto_targets(
method = spec_interp_absolute_targets(
rare_absolute_threshold = 40,
rare_relative_target = 0.4,
rare_absolute_target = 20,
rare_method = "max",
common_absolute_threshold = 55,
common_relative_target = 0.1,
common_absolute_target = 30,
common_method = "min",
cap_absolute_target = 60,
interp_method = "linear"
)
)
# calculate targets
targets <- p$targets$output(p)
# calculate correct targets
## run interpolation with relative targets
correct_targets <- c(fa) * linear_interpolation(fa, 40, 0.4, 55, 0.1)
## apply absolute targets
idx <- fa < 40
correct_targets[idx] <- pmax(correct_targets[idx], 20)
idx <- fa > 55
correct_targets[idx] <- pmin(correct_targets[idx], 30)
## apply target caps
correct_targets <- pmin(correct_targets, 60)
correct_targets <- pmin(correct_targets, fa)
# run tests
print(p)
expect_inherits(targets, "tbl_df")
expect_true(all(names(targets) == c("feature", "zone", "sense", "value")))
expect_inherits(targets$feature, "integer")
expect_inherits(targets$zone, "list")
expect_inherits(targets$value, "numeric")
expect_inherits(targets$sense, "character")
expect_equal(targets$feature, seq_len(terra::nlyr(sim_features)))
expect_equal(unlist(targets$zone), rep(1, terra::nlyr(sim_features)))
expect_equal(targets$value, correct_targets)
expect_equal(targets$sense, rep(">=", terra::nlyr(sim_features)))
})
test_that("invalid inputs", {
# load data
sim_pu_raster <- get_sim_pu_raster()
sim_features <- get_sim_features()
# enlarge spatial extent
terra::ext(sim_pu_raster) <- c(0, 1e5, 0, 1e5)
terra::ext(sim_features) <- terra::ext(sim_pu_raster)
# create problem
p <-
problem(sim_pu_raster, sim_features) %>%
add_min_set_objective()
# run tests
## rare_threshold
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
NA_real_, 0.4, 2000, "max", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"missing"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
"a", 0.4, 2000, "max", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"number"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
-1, 0.4, 2000, "max", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"0"
)
## rare_relative_target
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, NA_real_, 2000, "max", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"missing"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, "a", 2000, "max", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"number"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, -0.1, 2000, "max", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"between"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 1.1, 2000, "max", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"0"
)
## rare_absolute_target
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, Inf, "max", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"finite"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, "a", "max", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"number"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, -1, "max", 6000, 0.1, 6000, "min", 7000, "linear"
)
),
"0"
)
## rare_method
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "a", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"min"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, 1, 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"string"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, NA_character_, 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"missing"
)
## common_threshold
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", NA_real_, 0.1, 6000, "min", 7000, "linear"
)
),
"missing"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", "a", 0.1, 6000, "min", 7000, "linear"
)
),
"number"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", -1, 0.1, 6000, "min", 7000, "linear"
)
),
"0"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
1000, 0.4, 2000, "max", 500, 0.1, 6000, "min", 7000, "linear"
)
),
"less than or equal to"
)
## common_relative_target
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, NA_real_, 6000, "min", 7000, "linear"
)
),
"missing"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, "a", 6000, "min", 7000, "linear"
)
),
"number"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 1.1, 6000, "min", 7000, "linear"
)
),
"between"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, -0.2, 6000, "min", 7000, "linear"
)
),
"between"
)
## common_absolute_target
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, Inf, "min", 7000, "linear"
)
),
"finite"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, "a", "min", 7000, "linear"
)
),
"number"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, -1, "min", 7000, "linear"
)
),
"0"
)
## common_method
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, 6000, "greg", 7000, "linear"
)
),
"min"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, 6000, 1, 7000, "linear"
)
),
"string"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, 6000, NA_character_, 7000, "linear"
)
),
"missing"
)
## cap_threshold
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, 6000, "min", Inf, "linear"
)
),
"finite"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, 6000, "min", "a", "linear"
)
),
"number"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, 6000, "min", -1, "linear"
)
),
"0"
)
## interp_method
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, 6000, "min", 7000, "greg"
)
),
"linear"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, 6000, "min", 7000, 1
)
),
"string"
)
expect_tidy_error(
add_auto_targets(
p,
method = spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, 6000, "min", 7000, NA_character_
)
),
"missing"
)
})
test_that("warnings", {
# load data
sim_pu_polygons <- get_sim_pu_polygons()
# prepare data
sim_pu_polygons$spp_1 <- runif(nrow(sim_pu_polygons))
sim_pu_polygons$spp_2 <- runif(nrow(sim_pu_polygons))
sim_pu_polygons$spp_3 <- runif(nrow(sim_pu_polygons))
# create problem
p <-
problem(
sim_pu_polygons,
c("spp_1", "spp_2", "spp_3"),
cost_column = "cost",
feature_units = "km2"
) %>%
add_min_set_objective()
# run tests
expect_warning(
add_auto_targets(
p,
spec_interp_absolute_targets(
4000, 0.4, 2000, "max", 5000, 0.1, 6000, "min", 7000, "linear"
)
),
"spatial units"
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.