Calculates error, long term power and pass/fail criteria for adjusted ArcSine method

Share:

Description

Calculates error, long term power and pass/fail criteria for adjusted ArcSine method

Usage

1
errAAS(n, alp, h, phi, f)

Arguments

n

- Number of trials

alp

- Alpha value (significance level required)

h

- Adding factor

phi

- Null hypothesis value

f

- Failure criterion

Details

Evaluation of adjusted Wald-type interval for the arcsine transformation of the parameter p using error due to the difference of achieved and nominal level of significance for the n + 1 intervals

Value

A dataframe with

delalp

Delta-alpha is the increase of the nominal error with respect to real error

theta

Long term power of the test

Fail_Pass

Fail/pass based on the input f criterion

References

[1] 2014 Martin Andres, A. and Alvarez Hernandez, M. Two-tailed asymptotic inferences for a proportion. Journal of Applied Statistics, 41, 7, 1516-1529

See Also

Other Error for adjusted methods: PloterrAAS, PloterrAAll, PloterrALR, PloterrALT, PloterrASC, PloterrATW, PloterrAWD, errAAll, errALR, errALT, errASC, errATW, errAWD

Examples

1
2
n=20; alp=0.05; h=2;phi=0.99; f=-2
errAAS(n,alp,h,phi,f)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.