Calculates error, long term power and pass/fail criteria for Bayesian method

Description

Calculates error, long term power and pass/fail criteria for Bayesian method

Usage

1
errBA(n, alp, phi, f, a, b)

Arguments

n

- Number of trials

alp

- Alpha value (significance level required)

phi

- Null hypothesis value

f

- Failure criterion

a

- Beta parameters for hypo "p"

b

- Beta parameters for hypo "p"

Details

Evaluation of Bayesian Highest Probability Density (HPD) and two tailed intervals using error due to the difference of achieved and nominal level of significance for the n + 1 intervals for the Beta - Binomial conjugate prior model for the probability of success p

Value

A dataframe with

delalp

Delta-alpha is the increase of the nominal error with respect to real error

theta

Long term power of the test

Fail_Pass

Fail/pass based on the input f criterion

method

Name of method - Quantile or HPD

References

[1] 2014 Martin Andres, A. and Alvarez Hernandez, M. Two-tailed asymptotic inferences for a proportion. Journal of Applied Statistics, 41, 7, 1516-1529

See Also

Other Error for base methods: PloterrAS, PloterrAll, PloterrBA, PloterrEX, PloterrLR, PloterrLT, PloterrSC, PloterrTW, PloterrWD, errAS, errAll, errEX, errLR, errLT, errSC, errTW, errWD

Examples

1
2
n=20; alp=0.05; phi=0.05; f=-2;a=0.5;b=0.5
errBA(n,alp,phi,f,a,b)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.