Description Usage Arguments Details Value References See Also Examples
View source: R/311.Expec_Leng_ADJ_All.R
Performs expected length and sum of length of Adjusted Wald method
1 | lengthAWD(n, alp, h, a, b)
|
n |
- Number of trials |
alp |
- Alpha value (significance level required) |
h |
- Adding factor |
a |
- Beta parameters for hypo "p" |
b |
- Beta parameters for hypo "p" |
Evaluation of adjusted Wald-type interval using sum of length of the n + 1 intervals
A dataframe with
sumLen |
The sum of the expected length |
explMean |
The mean of the expected length |
explSD |
The Standard Deviation of the expected length |
explMax |
The max of the expected length |
explLL |
The Lower limit of the expected length calculated using mean - SD |
explUL |
The Upper limit of the expected length calculated using mean + SD |
[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.
[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.
[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.
Other Expected length of adjusted methods: PlotexplAAS
,
PlotexplAAll
, PlotexplALR
,
PlotexplALT
, PlotexplASC
,
PlotexplATW
, PlotexplAWD
,
PlotlengthAAS
,
PlotlengthAAll
,
PlotlengthALR
, PlotlengthALT
,
PlotlengthASC
, PlotlengthATW
,
PlotlengthAWD
, lengthAAS
,
lengthAAll
, lengthALR
,
lengthALT
, lengthASC
,
lengthATW
1 2 | n= 10; alp=0.05; h=2;a=1;b=1;
lengthAWD(n,alp,h,a,b)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.