Nothing
#' @title QC-PM: Quantile Composite-based Path Modeling
#'
#' @description
#' \code{qcpm} estimates path model parameters by quantile composite-based path modeling approach.
#'
#' @details
#'
#' Users can choose to estimate the model parameters for one or more specific quantiles (tau) of interest or
#' to use the default quantile values: tau = (0.25, 0,50, 0.75). If more than one specific quantile is selected,
#' the values must be defined as a numeric vector. It is also possible to fix the quantile to
#' 0.5 in the iterative procedure of the QC-PM algorithm by using the parameter \code{fix.quantile = TRUE}
#' for handling the measurement invariance issue (Dolce et al. 2021; Henseler et al. 2016).
#'
#'
#'
#' @param model A description of the user-specified model. The model is described using
#' the \href{https://lavaan.ugent.be/tutorial/syntax1.html}{lavaan sintax}. Structural and
#' measurement model are defined enclosed between double quotes.
#' The directional link between constructs is defined by using the tilde ("~") operator. On the
#' left-hand side of the operator there is the dependent construct and on the right-hand side the
#' explanatory constructs, separated by the ("+") operator. As for the outer model, constructs are
#' defined by listing their corresponding MVs after the operator (“=~”) if Mode A is the choice
#' for computing the outer weights, or the operator(“<~”) if Mode B is chosen. On the left-hand side
#' of the operator, there is the construct and on the right-hand side the MVs separated by the ("+")
#' operator. Variable labels cannot contain (".").
#'
#'
#'
#' @param data is a data frame or a data matrix (statistical units x manifest variables).
#' @param scheme is a string indicating the type of inner weighting scheme. It is equal to
#' \code{factorial} by default. Possible values are \code{centroid} or \code{factorial}.
#' @param tau indicates the specific quantile that must be considered for the estimation. It
#' is equal to NULL by default, using the quantile default values (0.25, 0.5, 0.75). When specified,
#' tau can be equal to a single value or to a vector, depending on the number of quantiles of interest.
#' @param fix.quantile when equal to \code{TRUE}, the quantile used in the iterative procedure
#' of the QC-PM algorithm is fixed to 0.5. It is used when measurement invariance is an issue.
#' It is equal to \code{FALSE} by default.
#' @param qcorr is a boolean. If it is equal to \code{TRUE}, loadings are estimated by using quantile
#' correlations. By default, it is equal to \code{FALSE}.
#' @param tol is a decimal value indicating the tolerance criterion for the iterations (tol=0.00001
#' by default).
#' @param maxiter is an integer indicating the maximum number of iterations (maxiter=100 by default).
#'
#' @return An object of class \code{qcpm}.
#' @return \item{outer.weights}{the outer weight estimates for each considered quantile.}
#' @return \item{outer.loadings}{the outer loading estimates for each considered quantile.}
#' @return \item{path.coefficients}{the path coefficient estimates for each considered quantile.}
#' @return \item{latent.scores}{list of the composite scores for each considered quantile.}
#' @return \item{data}{original dataset used for the analysis.}
#' @return \item{model}{internal parameters related to the model estimation.}
#'
#' @author Cristina Davino, Pasquale Dolce, Giuseppe Lamberti, Domenico Vistocco
#'
#'
#'
#' @references Davino, C., Dolce, P., Taralli, S. and Vistocco, D. (2020). Composite-based
#' path modeling for conditional quantiles prediction. An application to assess
#' health differences at local level in a well-being perspective.
#' \emph{Social Indicators Research}, doi:10.1007/s11205-020-02425-5.
#'
#' @references Davino, C. and Esposito Vinzi, V. (2016). Quantile composite-based path modeling.
#' \emph{Advances in Data Analysis and Classification}, \bold{10 (4)}, pp.
#' 491--520, doi:10.1007/s11634-015-0231-9.
#'
#' @references Dolce, P., Davino, C. and Vistocco, D. (2021). Quantile composite-based path modeling:
#' algorithms, properties and applications. \emph{Advances in Data Analysis and Classification},
#' doi:10.1007/s11634-021-00469-0.
#'
#' @references Henseler J., Ringle, C.M. and Sarstedt, M. (2016). Testing measurement invariance of
#' composites using partial least squares. \emph{International Marketing Review}, \bold{33 (3)}, pp.
#' 405--431, doi:10.1108/IMR-09-2014-0304
#'
#' @references Li, G., Li, Y. and Tsai, C. (2014). Quantile correlations and quantile autoregressive modeling.
#' \emph{Journal of the American Statistical Association}, \bold{110 (509)} pp. 246--261,
#' doi: 10.1080/01621459.2014.892007
#'
#' @seealso \code{\link{summary}}, \code{\link{assessment}}, \code{\link{boot}}, and
#' \code{\link{reliability}}
#'
#' @import quantreg
#' @importFrom cSEM parseModel
#' @importFrom broom tidy
#'
#' @export
#' @examples
#'
#' # Example of QC-PM in Well-Being analysis
#' # model with three LVs and reflective indicators
#'
#' # load library and dataset province
#' library(qcpm)
#' data(province)
#'
#' # Define the model using laavan sintax. Use a set of regression formulas defining
#' # firstly the structural model and then the measurement model
#' model <- "
# Structural model
#' ECOW ~ EDU
#' HEALTH ~ EDU + ECOW
#'
#' # Reflective measurement model
#' EDU =~ EDU1 + EDU2 + EDU3 + EDU4 + EDU5 + EDU6 + EDU7
#' ECOW =~ ECOW1 + ECOW2 + ECOW3 + ECOW4 + ECOW5 + ECOW6
#' HEALTH =~ HEALTH1 + HEALTH2 + HEALTH3
#' "
#'
#' # Apply qcpm
#' well.qcpm = qcpm(model,province)
#' well.qcpm
#'
qcpm = function(model, data, scheme="factorial", tau = NULL,fix.quantile=FALSE,qcorr=FALSE,
tol=0.00001, maxiter=100){
if (length(grep("\\.", colnames(data))) > 0) {
stop("At least one variable name in your data set contain a `.` (dot).",
" Dots are a reserved special character in qcpm Please rename these variables in your data and the model description.")
}
mod=cSEM::parseModel(model)
inner = as.matrix(mod$structural)
measurement = mod$measurement
# Apply trasformation from cSEM to classic PLSPM modes
# From common factor to A and from composite to B
construct_type2 = NULL
for (i in 1: length(mod$construct_type)){
if(mod$construct_type[i]=="Common factor")
{construct_type2[i] = "A"} else {construct_type2[i] = "B"}
}
modes = construct_type2
outer = list()
for (i in 1: dim(inner)[1]){
outer[[length(outer)+1]] =
match(names(which(mod$measurement[i,]==1)),colnames(data))
}
checks = get_checks(data,inner,outer,scheme,tau)
scheme = checks$scheme
data = checks$data
tau = checks$tau
outer = checks$outer
mvs.mean=colMeans(data)
mvs.sd = apply(data,2,stats::sd)
data = scale(data)
data.mod = data[,mod$indicators]
if(is.null(tau) == TRUE ) {tau_Alg = c(0.25,0.50,0.75)}
else {tau_Alg = c(tau,0.5)}
get_info(data, inner, outer, modes,scheme, tau,tau_Alg,fix.quantile)
IDM = inner
sets = outer
n = nrow(data.mod)
Nom.MVs = colnames(data.mod)
lvs = ncol(IDM)
lvs.names = colnames(IDM)
mvs = length(unlist(sets))
blocks = unlist(lapply(sets, length))
ODM = matrix(0, mvs, lvs)
colnames(ODM) = lvs.names
ITER = matrix(NA, length(tau_Alg), 1)
WEIGHTS = matrix(NA,mvs,length(tau_Alg))
LOADINGS = matrix(NA,mvs,length(tau_Alg))
PATHS = matrix(NA,sum(IDM),length(tau_Alg))
scores = array(NA, dim=c(nrow(data),lvs,length(tau_Alg)))
Tau=NULL
for (h in 1:length(tau_Alg)){
get_internal = get_internal_parameter_estimation(data.mod,
modes=modes,
tau_Alg[h],
lvs,
lvs.names,
IDM,
sets,
scheme,
method="br",
fix.quantile,
tol,
maxiter)
if (any(is.na(c(get_internal$Wbeta1)))==TRUE) next
if (utils::tail(get_internal$W.DIF,1)>0.001) {
warning(paste(" when tau =",tau_Alg[h])," the algorithm reached the maximum number of iterations" )}
LVs = data.mod%*%get_internal$Wbeta1
LVs = sweep(LVs, 2, get_internal$Intercept, "+")
LVs = scale(LVs)*sqrt((n-1)/n)
colnames(LVs) = lvs.names
#if(any(get_paths(IDM,Y_lvs=LVs,tau = tau_Alg[h])==0)==TRUE) next
load = get_loadings(data.mod, sets, mvs, lvs, IDM, LV=LVs, tau=tau_Alg[h],qcorr)
LOADINGS[,h] = round(as.matrix(rowSums(load)),4)
ITER[h,] = rev(get_internal$ITER)[1]
PATHS[,h] = round(as.matrix(get_paths(IDM,Y_lvs=LVs,tau = tau_Alg[h])),4)
WEIGHTS[,h] = round(as.matrix(get_internal$outer.weights),4)
Tau=c(Tau,tau_Alg[h])
LVs = sweep(LVs, 2, get_internal$Intercept, "+")
#SCORES[[length(SCORES)+1]] = as.data.frame(LVs)
scores[,,h]=LVs
}
rownames(ITER) = tau_Alg
colnames(ITER) = "iterations"
rownames(WEIGHTS) = rownames(LOADINGS) = get_names_MV(measurement)
colnames(WEIGHTS) = colnames(LOADINGS) =colnames(PATHS)= tau_Alg
rownames(PATHS) = get_element(IDM)
SCORES =list()
for(i in 1:length(tau_Alg)){
score = as.data.frame(scores[,,i])
colnames(score)=lvs.names
SCORES[[length(SCORES)+1]] = score
}
names(SCORES) = tau_Alg
if(sum(colSums(is.na(WEIGHTS)))>0) {
warning(" tau = ",paste(names(which(colSums(is.na(WEIGHTS))>0))," ")," produce inadmissible results")}
model = list(qcpm.iteration = ITER,mvs.mean=mvs.mean,mvs.sd = mvs.sd,
qcpm.outer.matrix = measurement, qcpm.outer.list=sets, tau=tau,
tau_Alg=tau_Alg, qcpm.modes=modes,
qcpm.inner = inner,fix.quantile=fix.quantile,
outer.weights2 = as.matrix(WEIGHTS))
if(fix.quantile == TRUE && is.null(tau)==TRUE){
outer.weights = as.matrix(WEIGHTS[,2])
outer.loadings = as.matrix(LOADINGS[,2])
path.coefficients =PATHS
colnames(outer.weights)=colnames(outer.loadings)=0.5
}
else if(fix.quantile == TRUE && is.null(tau)==FALSE){
outer.weights = as.matrix(WEIGHTS[,length(tau_Alg)])
outer.loadings = as.matrix(LOADINGS[,length(tau_Alg)])
path.coefficients = as.matrix(PATHS[,-length(tau_Alg)])
colnames(outer.weights)=colnames(outer.loadings)=0.5
colnames(path.coefficients)= tau
}
else if(fix.quantile == FALSE && is.null(tau)==FALSE){
outer.weights = as.matrix(WEIGHTS[,-length(tau_Alg)])
outer.loadings = as.matrix(LOADINGS[,-length(tau_Alg)])
path.coefficients = as.matrix(PATHS[,-length(tau_Alg)])
colnames(outer.weights)=colnames(outer.loadings)=
colnames(path.coefficients)= tau
}
else if(fix.quantile == FALSE && is.null(tau)==TRUE){
outer.weights = WEIGHTS
outer.loadings = LOADINGS
path.coefficients = PATHS
latent.scores = SCORES
}
res = list( outer.weights = outer.weights,
outer.loadings = outer.loadings,
path.coefficients = path.coefficients,
latent.scores = SCORES,
data=data.mod,
model = model)
class(res) = "qcpm"
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.