Nothing
#' Syllabication
#'
#' \code{syllable_sum} - Count the number of syllables per row of text.
#'
#' @param text.var The text variable
#' @param parallel logical. If \code{TRUE} attempts to run the function on
#' multiple cores. Note that this may not mean a speed boost if you have one
#' core or if the data set is smaller as the cluster takes time to create.
#' @param \ldots Other arguments passed to \code{syllable_count}.
#' @param text A single character vector of text.
#' @param remove.bracketed logical. If \code{TRUE} brackets are removed from
#' the analysis.
#' @param algorithm.report logical. If \code{TRUE} generates a report of words
#' not found in the dictionary (i.e., syllables were calculated with an
#' algorithm).
#' @return \code{syllable_sum} - returns a vector of syllable counts per row.
#' @rdname syllabication
#' @details The worker function of all the syllable functions is
#' \code{\link[qdap]{syllable_count}}, though it is not intended for direct
#' use on a transcript. This function relies on a combined dictionary lookup
#' (based on the Nettalk Corpus (Sejnowski & Rosenberg, 1987)) and backup
#' algorithm method.
#' @references Sejnowski, T.J., and Rosenberg, C.R. (1987). "Parallel networks
#' that learn to pronounce English text" in Complex Systems, 1, 145-168.
#' @export
#' @importFrom parallel parLapply clusterExport makeCluster detectCores stopCluster
#' @importFrom qdapDictionaries view_data
#' @examples
#' \dontrun{
#' syllable_count("Robots like Dason lie.")
#' syllable_count("Robots like Dason lie.", algorithm.report = TRUE)
#'
#' syllable_sum(DATA$state)
#' x1 <- syllable_sum(rajSPLIT$dialogue)
#' plot(x1)
#' cumulative(x1)
#'
#' polysyllable_sum(DATA$state)
#' x2 <- polysyllable_sum(rajSPLIT$dialogue)
#' plot(x2)
#' cumulative(x2)
#'
#' combo_syllable_sum(DATA$state)
#' x3 <- combo_syllable_sum(rajSPLIT$dialogue)
#' plot(x3)
#' cumulative(x3)
#' }
syllable_sum <-
function(text.var, parallel = FALSE, ...) {
if (!parallel) {
out <- unlist(lapply(as.character(text.var), function(x) {
sum(syllable_count(Trim(x))[['syllables']], ...)
}))
} else {
cl <- makeCluster(mc <- getOption("cl.cores", detectCores()/2))
clusterExport(cl=cl, varlist=c("text.var", "strip", "Trim",
"syllable_count", "scrubber", "bracketX", "env.syl",
"reducer", "clean", "mgsub"),
envir = environment())
m <- parLapply(cl, as.character(text.var), function(x) {
sum(syllable_count(Trim(x))[['syllables']])
}
)
stopCluster(cl)
out <- unlist(m)
}
class(out) <- c("syllable_sum", "syllable_freq", class(out))
attributes(out)[["wc"]] <- wc(text.var)
attributes(out)[["type"]] <- "Syllable"
out
}
#' Prints an syllable_sum object
#'
#' Prints an syllable_sum object
#'
#' @param x The syllable_sum object
#' @param \ldots ignored
#' @export
#' @method print syllable_sum
print.syllable_sum <-
function(x, ...) {
print(as.numeric(x))
}
#' Count the Number of Syllables Per Word in a Text String
#'
#' \code{syllable_count} - Count the number of syllables in a single text string.
#'
#' @param env A lookup environment to lookup the number of syllables in found
#' words.
#' @return \code{syllable_count} - returns a dataframe of syllable counts and
#' algorithm/dictionary uses and, optionally, a report of words not found in the dictionary.
#' @rdname syllabication
#' @export
syllable_count <-
function(text, remove.bracketed = TRUE, algorithm.report = FALSE,
env = qdap::env.syl) {
if (length(text) > 1) stop("text must be length one")
if (is.na(text)) {
NA
} else {
q <- scrubber(text)
if (remove.bracketed) {
q <- bracketX(q)
}
q <- strip(q)
if (q=="") {
return(NA)
}
y <- unlist(lapply(q, strsplit, "\\s+"))
SYLL <- function(x) {
if(exists(x, envir = env)){
return(get(x, envir = env))
} else {
x2 <- as.character(substring(x, 1, nchar(x) - 1))
if(substring(x, nchar(x)) == "s" &
exists(x2, envir = env)){
return(get(x2, envir = env))
} else {
m <- gsub("eeing", "XX", x)
m <- gsub("eing", "XX", m)
ended <- function(z) {
if (substring(z, nchar(z) - 1, nchar(z)) == "ed" &
substring(z, nchar(z) - 2, nchar(z) - 2) %in% c("t",
"d")) {
z
} else {
if (substring(z, nchar(z) - 1, nchar(z)) == "ed" &
!substring(z, nchar(z) - 2, nchar(z) - 2) %in%
c("t", "d")) {
substring(z, 1, nchar(z) - 2)
} else {
z
}
}
}
m <- ended(m)
conely <- function(z) {
if (substring(z, nchar(z) - 2, nchar(z)) == "ely"){
paste0(substring(z, 1, nchar(z) - 3), "ly")
} else {
z
}
}
m <- conely(m)
conle <- function(z) {
if (substring(z, nchar(z) - 1, nchar(z)) == "le" &
!substring(z, nchar(z) - 2, nchar(z) - 2) %in%
c("a", "e", "i", "o", "u", "y")) {
paste0(substring(z, 1, nchar(z) - 1), "X")
} else {
if (substring(z, nchar(z) - 1, nchar(z)) == "le" &
substring(z, nchar(z) - 2, nchar(z) - 2) %in%
c("a", "e", "i", "o", "u", "y")) {
substring(z, 1, nchar(z) - 1)
} else {
z
}
}
}
m <- conle(m)
conles <- function(z) {
if (substring(z, nchar(z) - 2, nchar(z)) == "les" &
!substring(z, nchar(z) - 3, nchar(z) - 3) %in%
c("a", "e", "i", "o", "u", "y")) {
paste0(substring(z, 1, nchar(z) - 2), "X")
} else {
if (substring(z, nchar(z) - 2, nchar(z)) == "les" &
substring(z, nchar(z) - 3, nchar(z) - 3) %in%
c("a", "e", "i", "o", "u", "y")) {
substring(z, 1, nchar(z) - 2)
} else {
z
}
}
}
m <- conles(m)
magice <- function(z) {
if (substring(z, nchar(z), nchar(z)) == "e" &
length(intersect(unlist(strsplit(z, NULL)),
c("a", "e", "i", "o", "u", "y"))) > 1) {
substring(z, 1, nchar(z) - 1)
} else {
z
}
}
m <- magice(m)
nchar(gsub("[^X]", "", gsub("[aeiouy]+", "X", m)))
}
}
}
n <- unlist(lapply(y, SYLL))
InDic <- function(x) {
ifelse(exists(x, envir = env), "-",
ifelse(substring(x, nchar(x), nchar(x)) == "s" &&
exists(substring(x, nchar(x), nchar(x)),
envir = env), "-", "NF"))
}
k <- sapply(y, InDic)
DF <- data.frame(words = y, syllables = n, in.dictionary = k,
row.names = NULL, stringsAsFactors = FALSE)
if (algorithm.report == TRUE){
list("ALGORITHM REPORT" = DF[which(DF$in.dictionary == 'NF'), ],
"SYLLABLE DATAFRAME" = DF)
} else {
DF
}
}
}
## Function to check if ends in s
s_end <- function(x, n = 1){
substr(x, nchar(x)-n+1, nchar(x)) == "s"
}
## Function to drop last letter
drop_s <- function(x, n){
substr(x, 1, nchar(x) - 1)
}
#' Transcript Apply Summing of Polysyllables
#'
#' \code{polysyllable_sum} - Count the number of polysyllables per row of text.
#'
#' @return \code{polysyllable_sum} - returns a vector of polysyllable counts per row.
#' @rdname syllabication
#' @export
polysyllable_sum <-
function(text.var, parallel = FALSE) {
Var1 <- NULL
counter <- function(x) {
v <- table(syllable_count(Trim(x))[["syllables"]])
if (identical(c(v), integer(0))){
return(0)
}
y <- as.data.frame(v, stringsAsFactors = FALSE)
z <- subset(y, as.numeric(as.character(Var1)) >= 3)
j <- sum(z$Freq)
return(j)
}
if (!parallel) {
out <- unlist(lapply(as.character(text.var), function(x) counter(x)))
} else {
cl <- makeCluster(mc <- getOption("cl.cores", detectCores()/2))
clusterExport(cl=cl, varlist=c("text.var", "counter", "strip",
"Trim", "syllable_count", "scrubber", "bracketX", "env.syl"),
envir = environment())
m <- parLapply(cl, as.character(text.var), function(x) {
counter(x)
}
)
stopCluster(cl)
out <- unlist(m)
}
class(out) <- c("polysyllable_sum", "syllable_freq", class(out))
attributes(out)[["wc"]] <- wc(text.var)
attributes(out)[["type"]] <- "Pollysyllable"
out
}
#' Prints an polysyllable_sum object
#'
#' Prints an polysyllable_sum object
#'
#' @param x The polysyllable_sum object
#' @param \ldots ignored
#' @export
#' @method print polysyllable_sum
print.polysyllable_sum <-
function(x, ...) {
print(as.numeric(x))
}
#' Transcript Apply Syllable and Polysyllable Count
#'
#' \code{combo_syllable_sum} - Count the number of both syllables and
#' polysyllables per row of text.
#'
#' @return \code{combo_syllable_sum} - returns a dataframe of syllable and polysyllable
#' counts per row.
#' @rdname syllabication
#' @export
combo_syllable_sum <-
function(text.var, parallel = FALSE) {
Trim <- function(x) gsub("^\\s+|\\s+$", "", x)
counter <- function(x) {
w <- syllable_count(Trim(x))[["syllables"]]
if (length(w) ==1 && is.na(w)) return(c(0, 0))
y <- as.data.frame(table(w))
z <- subset(y, as.numeric(as.character(w)) >= 3)
j <- sum(z$Freq)
k <- sum(w)
return(c(k, j))
}
if (!parallel) {
m <- unlist(lapply(as.character(text.var), function(x) counter(x)))
} else {
cl <- makeCluster(mc <- getOption("cl.cores", detectCores()))
clusterExport(cl=cl, varlist=c("text.var", "counter", "strip",
"syllable_count", "scrubber", "bracketX", "env.syl"),
envir = environment())
m <- parLapply(cl, as.character(text.var), function(x) {
counter(x)
}
)
stopCluster(cl)
m <- unlist(m)
}
n <- as.data.frame(t(matrix(m, 2, length(m)/2)))
names(n) <- c("syllable.count", "polysyllable.count")
class(n) <- c("combo_syllable_sum", class(n))
attributes(n)[["text.var"]] <- text.var
attributes(n)[["wc"]] <- wc(text.var)
n
}
#' Prints an combo_syllable_sum object
#'
#' Prints an combo_syllable_sum object
#'
#' @param x The combo_syllable_sum object
#' @param \ldots ignored
#' @export
#' @method print combo_syllable_sum
print.combo_syllable_sum <-
function(x, ...) {
class(x) <- "data.frame"
print(x)
}
#' Plots a syllable_freq Object
#'
#' Plots a syllable_freq object.
#'
#' @param x The syllable_freq object.
#' @param \ldots ignored
#' @method plot syllable_freq
#' @export
plot.syllable_freq <- function(x, ...){
dat <- data.frame(x=x)
ggplot2::ggplot(dat, ggplot2::aes_string(x="x")) +
ggplot2::geom_histogram() +
ggplot2::ylab("Count") +
ggplot2::xlab(sprintf("Number of %s Per Sentence",
attributes(x)[["type"]]))
}
#' \code{cumulative.syllable_freq} - Generate syllable_freq over time (duration in
#' sentences).
#' @rdname cumulative
#' @export
#' @method cumulative syllable_freq
cumulative.syllable_freq <- function(x, ...){
keeps <- !is.na(attributes(x)[["wc"]])
y <- x[keeps]
syl_sent <- y/attributes(x)[["wc"]][keeps]
out <- data.frame(cumave =cumsum(syl_sent)/1:length(y), Time = 1:length(y))
class(out) <- c("cumulative_syllable_freq", class(out))
attributes(out)[["type"]] <- attributes(x)[["type"]]
attributes(out)[["ave"]] <- mean(syl_sent)
out
}
#' Plots a cumulative_syllable_freq Object
#'
#' Plots a cumulative_syllable_freq object.
#'
#' @param x The cumulative_syllable_freq object.
#' @param \ldots ignored
#' @method plot cumulative_syllable_freq
#' @export
plot.cumulative_syllable_freq <- function(x, ...) {
ggplot2::ggplot(x, ggplot2::aes_string(x="Time", y="cumave")) +
ggplot2::theme_bw() +
ggplot2::geom_line(size=1) + ggplot2::geom_smooth() +
ggplot2::ylab(sprintf("Cumulative Average %s Per Sentence",
attributes(x)[["type"]])) +
ggplot2::xlab("Duration") +
ggplot2::geom_hline(y=attributes(x)[["ave"]], color="grey30", size=1,
alpha=.3, linetype=2) +
ggplot2::annotate("text", x = nrow(x)/3, y = attributes(x)[["ave"]],
label = sprintf("Average %s Per Sentence", attributes(x)[["type"]]),
vjust = .3, color="grey30", size=4) +
ggplot2::scale_x_continuous(expand=c(0, 0))
}
#' Prints a cumulative_syllable_freqObject
#'
#' Prints a cumulative_syllable_freq object.
#'
#' @param x The cumulative_syllable_freqobject.
#' @param \ldots ignored
#' @method print cumulative_syllable_freq
#' @export
print.cumulative_syllable_freq <- function(x, ...) {
print(plot.cumulative_syllable_freq(x, ...))
}
#' \code{cumulative.combo_syllable_sum} - Generate combo_syllable_sum over time (duration in
#' sentences).
#' @rdname cumulative
#' @export
#' @method cumulative combo_syllable_sum
cumulative.combo_syllable_sum <- function(x, ...){
keeps <- !is.na(attributes(x)[["wc"]])
syl_sent <- y <- x[keeps, ]
syl_sent[gsub(".count", "", paste0("ave.", names(y)))] <- lapply(y, function(v, den =
attributes(x)[["wc"]][keeps]) {
v/den
})
len <- nrow(syl_sent)
syl_sent[gsub(".count", "", paste0("cum.ave.", names(y)))] <- lapply(syl_sent[, 3:4],
function(v) {
cumsum(v)/1:len
})
syl_sent[["Time"]] <- 1:len
class(syl_sent) <- c("cumulative_combo_syllable_sum", "data.frame")
attributes(syl_sent)[["ave.syl"]] <- sum(syl_sent[,
"syllable.count"])/sum(attributes(x)[["wc"]][keeps])
attributes(syl_sent)[["ave.polysyl"]] <- sum(syl_sent[,
"polysyllable.count"])/sum(attributes(x)[["wc"]][keeps])
syl_sent
}
#' Plots a cumulative_combo_syllable_sum Object
#'
#' Plots a cumulative_combo_syllable_sum object.
#'
#' @param x The cumulative_combo_syllable_sum object.
#' @param \ldots ignored
#' @method plot cumulative_combo_syllable_sum
#' @export
plot.cumulative_combo_syllable_sum <- function(x, ...) {
dat <- reshape2::melt(x[, -c(1:4)], id="Time", variable.name="Type")
dat[, "Type"] <- gsub("cum.ave.", "", dat[, "Type"])
dat[, "Type"] <- paste0(toupper(substr(dat[, "Type"], 1, 1)),
substr(dat[, "Type"], 2, nchar(dat[, "Type"])))
dat[, "Type"] <- factor(dat[, "Type"], levels=c("Syllable", "Polysyllable"))
dat2 <- data.frame(Type=factor(c("Syllable", "Polysyllable"),
levels=c("Syllable", "Polysyllable")),
Mean = c(attributes(x)[["ave.syl"]], attributes(x)[["ave.polysyl"]]),
x = 1)
dat2[, "labs"] <- sprintf("Average %s Per Sentence", dat2[["Type"]])
ggplot2::ggplot(dat, ggplot2::aes_string(x="Time", group="Type",
color="Type", y="value")) +
ggplot2::theme_bw() +
ggplot2::geom_smooth(color="black") +
ggplot2::geom_line(size=1) +
ggplot2::ylab("Cummulative Average Per Sentence") +
ggplot2::xlab("Duration") +
ggplot2::geom_hline(data=dat2, ggplot2::aes_string(yintercept="Mean",
group="Type"), color="grey30", size=1, alpha=.3, linetype=2) +
ggplot2::geom_text(data=dat2, ggplot2::aes_string(x = "x",
y = "Mean", label = "labs"), hjust = -.05, vjust = .3,
color="grey40", size=4) +
ggplot2::scale_x_continuous(expand=c(0, 0)) +
ggplot2::facet_wrap(~Type, scales="free_y", ncol=1) +
ggplot2::guides(color=FALSE)
}
#' Prints a cumulative_combo_syllable_sum Object
#'
#' Prints a cumulative_combo_syllable_sum object.
#'
#' @param x The cumulative_combo_syllable_sum object.
#' @param \ldots ignored
#' @method print cumulative_combo_syllable_sum
#' @export
print.cumulative_combo_syllable_sum <- function(x, ...) {
print(plot.cumulative_combo_syllable_sum(x, ...))
}
#' Plots a combo_syllable_sum Object
#'
#' Plots a combo_syllable_sum object.
#'
#' @param x The combo_syllable_sum object.
#' @param \ldots ignored
#' @method plot combo_syllable_sum
#' @export
plot.combo_syllable_sum <- function(x, ...){
x[["syllable.count"]] <- x[[1]] - x[[2]]
wrdcnt <- attributes(x)[["wc"]]
x <- x[!is.na(wrdcnt), ]
wrdcnt <- wrdcnt[!is.na(wrdcnt)]
x[] <- lapply(x, function(x) x/wrdcnt)
x[["Time"]] <- 1:nrow(x)
x[["Time"]] <- factor(qdapTools::pad(x[["Time"]]))
colnames(x) <- gsub("\\.count", "", colnames(x))
dat <- reshape2::melt(x, id="Time", variable="Type")
extra <- max(rowSums(x[, 1:2]))
dat[["Type"]] <- factor(gsub("(\\w)(\\w*)", "\\U\\1\\L\\2",
dat[["Type"]], perl=T) , levels=c("Polysyllable", "Syllable"))
dat[["time"]] <- as.numeric(dat[["Time"]])
ggplot2::ggplot(dat, aes_string(x="Time", fill="Type", weight="value")) +
ggplot2::geom_bar() +
ggplot2::guides(fill = ggplot2::guide_legend(reverse=TRUE)) +
ggplot2::xlab("Duration") +
ggplot2::ylab("Syllable/Polysyllable Per Word") +
ggplot2::theme(axis.text.x = ggplot2::element_blank(),
axis.ticks.x = ggplot2::element_blank(),
panel.grid.major.y = ggplot2::element_blank(),
panel.grid.minor.y = ggplot2::element_blank(),
panel.background = ggplot2::element_rect(fill = "white", color="black")) +
ggplot2::scale_y_continuous(expand = c(0, 0),
limits = c(0, extra + extra*.05)) +
ggplot2::scale_fill_manual(values=c("#000000", "#C1C1C1")) +
ggplot2::geom_smooth(aes_string(y="value", x="time", group="Type"),
fill="#7070DB")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.