Nothing
# Author: Robert J. Hijmans
# Date : June 2013
# Version 1.0
# Licence GPL v3
.circular.weight <- function(rs, d, fillNA=FALSE) {
nx <- 1 + 2 * floor(d/rs[1])
ny <- 1 + 2 * floor(d/rs[2])
w <- matrix(ncol=nx, nrow=ny)
w[ceiling(ny/2), ceiling(nx/2)] <- 1
if ((nx != 1) || (ny != 1)) {
x <- raster(w, xmn=0, xmx=nx*rs[1], ymn=0, ymx=ny*rs[2], crs="+proj=utm +zone=1 +datum=WGS84")
d <- as.matrix(distance(x)) <= d
w <- d / sum(d)
}
if (fillNA) {
w[w <= 0] <- NA
}
w
}
.Gauss.weight <- function(rs, sigma) {
if (length(sigma) == 1) {
d <- 3 * sigma
} else {
d <- sigma[2]
sigma <- sigma[1]
}
nx <- 1 + 2 * floor(d/rs[1])
ny <- 1 + 2 * floor(d/rs[2])
m <- matrix(ncol=nx, nrow=ny)
xr <- (nx * rs[1]) / 2
yr <- (ny * rs[2]) / 2
r <- raster(m, xmn=-xr[1], xmx=xr[1], ymn=-yr[1], ymx=yr[1], crs="+proj=utm +zone=1 +datum=WGS84")
p <- xyFromCell(r, 1:ncell(r))^2
# according to http://en.wikipedia.org/wiki/Gaussian_filter
m <- 1/(2*pi*sigma^2) * exp(-(p[,1]+p[,2])/(2*sigma^2))
m <- matrix(m, ncol=nx, nrow=ny, byrow=TRUE)
# sum of weights should add up to 1
m / sum(m)
}
.rectangle.weight <- function(rs, d) {
d <- rep(d, length.out=2)
nx <- 1 + 2 * floor(d[1]/rs[1])
ny <- 1 + 2 * floor(d[2]/rs[2])
m <- matrix(1, ncol=nx, nrow=ny)
m / sum(m)
}
focalWeight <- function(x, d, type=c('circle', 'Gauss', 'rectangle'), fillNA=FALSE) {
type <- match.arg(type)
x <- res(x)
if (type == 'circle') {
.circular.weight(x, d[1], fillNA)
} else if (type == 'Gauss') {
if (!length(d) %in% 1:2) {
stop("If type=Gauss, d should be a vector of length 1 or 2")
}
.Gauss.weight(x, d)
} else {
.rectangle.weight(x, d)
}
}
..simple.circular.weight <- function(radius) {
# based on a function provided by Thomas Cornulier
x <- -radius:radius
n <- length(x)
d <- sqrt(rep(x, n)^2 + rep(x, each=n)^2) <= radius
matrix(d + 0, n, n) / sum(d)
}
..simple.Gauss.weight <- function(n, sigma) {
# need to adjust for non-square cells to distance....
m <- matrix(ncol=n, nrow=n)
col <- rep(1:n, n)
row <- rep(1:n, each=n)
x <- col - ceiling(n/2)
y <- row - ceiling(n/2)
# according to http://en.wikipedia.org/wiki/Gaussian_filter
m[cbind(row, col)] <- 1/(2*pi*sigma^2) * exp(-(x^2+y^2)/(2*sigma^2))
# sum of weights should add up to 1
m / sum(m)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.