Nothing
#' @title Cramer's V (phi)
#'
#' @description Calculates Cramer's V for a table of nominal variables;
#' confidence intervals by bootstrap.
#'
#' @param x Either a two-way table or a two-way matrix.
#' Can also be a vector of observations for one dimension
#' of a two-way table.
#' @param y If \code{x} is a vector, \code{y} is the vector of observations for
#' the second dimension of a two-way table.
#' @param ci If \code{TRUE}, returns confidence intervals by bootstrap.
#' May be slow.
#' @param conf The level for the confidence interval.
#' @param type The type of confidence interval to use.
#' Can be any of "\code{norm}", "\code{basic}",
#' "\code{perc}", or "\code{bca}".
#' Passed to \code{boot.ci}.
#' @param R The number of replications to use for bootstrap.
#' @param histogram If \code{TRUE}, produces a histogram of bootstrapped values.
#' @param digits The number of significant digits in the output.
#' @param bias.correct If \code{TRUE}, a bias correction is applied.
#' @param reportIncomplete If \code{FALSE} (the default),
#' \code{NA} will be reported in cases where there
#' are instances of the calculation of the statistic
#' failing during the bootstrap procedure.
#' @param verbose If \code{TRUE}, prints additional statistics.
#' @param tolerance If the variance of the bootstrapped values are less than
#' \code{tolerance}, NA is returned for the confidence interval
#' values.
#' @param ... Additional arguments passed to \code{chisq.test}.
#'
#' @details Cramer's V is used as a measure of association
#' between two nominal variables, or as an effect size
#' for a chi-square test of association. For a 2 x 2 table,
#' the absolute value of the phi statistic is the same as
#' Cramer's V.
#'
#' Because V is always positive, if \code{type="perc"},
#' the confidence interval will
#' never cross zero. In this case,
#' the confidence interval range should not
#' be used for statistical inference.
#' However, if \code{type="norm"}, the confidence interval
#' may cross zero.
#'
#' When V is close to 0 or very large,
#' or with small counts,
#' the confidence intervals
#' determined by this
#' method may not be reliable, or the procedure may fail.
#'
#' @author Salvatore Mangiafico, \email{mangiafico@njaes.rutgers.edu}
#'
#' @references \url{https://rcompanion.org/handbook/H_10.html}
#'
#' @seealso \code{\link{phi}},
#' \code{\link{cohenW}},
#' \code{\link{cramerVFit}}
#'
#' @concept effect size
#' @concept Cramer's V
#' @concept phi
#' @concept chi square test
#' @concept confidence interval
#'
#' @return A single statistic, Cramer's V.
#' Or a small data frame consisting of Cramer's V,
#' and the lower and upper confidence limits.
#'
#' @examples
#' ### Example with table
#' data(Anderson)
#' fisher.test(Anderson)
#' cramerV(Anderson)
#'
#' ### Example with two vectors
#' Species = c(rep("Species1", 16), rep("Species2", 16))
#' Color = c(rep(c("blue", "blue", "blue", "green"),4),
#' rep(c("green", "green", "green", "blue"),4))
#' fisher.test(Species, Color)
#' cramerV(Species, Color)
#'
#' @importFrom stats chisq.test
#' @importFrom boot boot boot.ci
#' @export
cramerV = function(x, y=NULL,
ci=FALSE, conf=0.95, type="perc",
R=1000, histogram=FALSE,
digits=4, bias.correct=FALSE,
reportIncomplete=FALSE,
verbose=FALSE,
tolerance=1e-16, ...) {
CV=NULL
if(is.factor(x)){x=as.vector(x)}
if(is.factor(y)){y=as.vector(y)}
if(is.vector(x) & is.vector(y)){
N = length(x)
Chi.sq = suppressWarnings(chisq.test(x, y, correct=FALSE, ...)$statistic)
Phi = Chi.sq / N
Row = length(unique(x))
C = length(unique(y))
CV = sqrt(Phi / min(Row-1, C-1))
}
if(is.matrix(x)){x=as.table(x)}
if(is.table(x)){
TABLE = x
N = sum(TABLE)
Chi.sq = suppressWarnings(chisq.test(TABLE, correct=FALSE, ...)$statistic)
Phi = Chi.sq / N
Row = nrow(x)
C = ncol(x)
CV = sqrt(Phi / min(Row-1, C-1))
}
PhiOrg = Phi
VOrg = CV
PhiNew = NA
VNew = NA
if(bias.correct){
Phi = max(0, Phi-((Row-1)*(C-1)/(N-1)))
CC = C-((C-1)^2/(N-1))
RR = Row-((Row-1)^2/(N-1))
CV = sqrt(Phi / min(RR-1, CC-1))
PhiNew = Phi
VNew = CV
}
if(verbose){
cat("\n")
cat("Rows =", signif(Row, digits=digits))
cat("\n")
cat("Columns =", signif(C, digits=digits))
cat("\n")
cat("N =", N)
cat("\n")
cat("Chi-squared =", signif(Chi.sq, digits=digits))
cat("\n")
cat("Phi =", signif(PhiOrg, digits=digits))
cat("\n")
cat("Corrected Phi =", signif(PhiNew, digits=digits))
cat("\n")
cat("V =", signif(VOrg, digits=digits))
cat("\n")
cat("Corrected V =", signif(VNew, digits=digits))
cat("\n")
cat("\n")
}
if(bias.correct){
PhiNew = max(0, Phi-((Row-1)*(C-1)/(N-1)))
CC = C-((C-1)^2/(N-1))
RR = Row-((Row-1)^2/(N-1))
CV = sqrt(Phi / min(RR-1, CC-1))
}
CV = signif(as.numeric(CV), digits=digits)
if(is.nan(CV) & ci==TRUE){
return(data.frame(Cramer.V=CV, lower.ci=NA, upper.ci=NA))}
if(ci==TRUE){
if(is.matrix(x)){x=as.table(x)}
if(is.table(x)){
Counts = as.data.frame(x)
Long = Counts[rep(row.names(Counts), Counts$Freq), c(1, 2)]
rownames(Long) = seq(1:nrow(Long))
}
if(is.vector(x) & is.vector(y)){
Long = data.frame(x=x, y=y)
}
L1 = length(unique(droplevels(Long[,1])))
L2 = length(unique(droplevels(Long[,2])))
Function = function(input, index){
Input = input[index,]
NOTEQUAL=0
if(length(unique(droplevels(Input[,1]))) != L1 |
length(unique(droplevels(Input[,2]))) != L2){NOTEQUAL=1}
if(NOTEQUAL==1){FLAG=1; return(c(NA,FLAG))}
if(NOTEQUAL==0){
N = length(Input[,1])
Chi.sq = suppressWarnings(chisq.test(Input[,1], Input[,2],
correct=FALSE, ...)$statistic)
Phi = Chi.sq / N
Row = length(unique(Input[,1]))
C = length(unique(Input[,2]))
CV = sqrt(Phi / min(Row-1, C-1))
FLAG = 0
if(bias.correct==TRUE){
Phi = max(0, Phi-((Row-1)*(C-1)/(N-1)))
CC = C-((C-1)^2/(N-1))
RR = Row-((Row-1)^2/(N-1))
CV = sqrt(Phi / min(RR-1, CC-1))
}
return(c(CV,FLAG))
}
}
Boot = boot(Long, Function, R=R)
CI1=NA; CI2=NA
if(var(Boot$t[,1], na.rm=TRUE) > tolerance){
BCI = boot.ci(Boot, conf=conf, type=type)
if(type=="norm") {CI1=BCI$normal[2]; CI2=BCI$normal[3]}
if(type=="basic"){CI1=BCI$basic[4]; CI2=BCI$basic[5]}
if(type=="perc") {CI1=BCI$percent[4]; CI2=BCI$percent[5]}
if(type=="bca") {CI1=BCI$bca[4]; CI2=BCI$bca[5]}
}
if(sum(Boot$t[,2])>0 & reportIncomplete==FALSE) {CI1=NA; CI2=NA}
CI1=signif(CI1, digits=digits)
CI2=signif(CI2, digits=digits)
if(histogram==TRUE){hist(Boot$t[,1], col = "darkgray", xlab="V", main="")}
}
if(ci==FALSE){names(CV)="Cramer V"; return(CV)}
if(ci==TRUE){return(data.frame(Cramer.V=CV, lower.ci=CI1, upper.ci=CI2))}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.