R/aic.R

Defines functions nObsFun abic sumDf

##
## R package reda by Wenjie Wang, Haoda Fu, and Jun Yan
## Copyright (C) 2015-2022
##
## This file is part of the R package reda.
##
## The R package reda is free software: You can redistribute it and/or
## modify it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or any later
## version (at your option). See the GNU General Public License at
## <https://www.gnu.org/licenses/> for details.
##
## The R package reda is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
##


## collation after class.R
##' @include class.R
NULL


##' Akaike Information Criterion (AIC)
##'
##' \code{AIC,rateReg-method} is an S4 class method calculating Akaike
##' information criterion (AIC) for one or several \code{rateReg} objects,
##' according to the formula - 2 * log-likelihood + 2 * nPar, where nPar
##' represents the number of parameters in the fitted model.
##'
##' When comparing models fitted by maximum likelihood to the same data, the
##' smaller the AIC, the better the fit. A friendly warning will be thrown out
##' if the numbers of observation were different in the model comparison.
##' \code{help(AIC, stats)} for other details.
##'
##' @param object An object used to dispatch a method.
##' @param ... Optionally more fitted model objects.
##' @param k An optional numeric value used as the penalty per parameter.  The
##'     default \code{k = 2} is the classic AIC.
##'
##' @return If just one object is provided, a numeric value representing
##'     calculated AIC.  If multiple objects are provided, a data frame with
##'     rows corresponding to the objects and columns \code{df} and \code{AIC},
##'     where \code{df} means degree of freedom, which is the number of
##'     parameters in the fitted model.
##'
##' @aliases AIC,rateReg-method
##'
##' @examples
##' ## See examples given in function rateReg.
##'
##' @seealso
##' \code{\link{rateReg}} for model fitting;
##' \code{\link{summary,rateReg-method}} for summary of a fitted model;
##' \code{\link{BIC,rateReg-method}} for BIC.
##'
##' @importFrom stats AIC
##' @export
setMethod(f = "AIC", signature = "rateReg",
          definition = function(object, ..., k = 2) {
              if (! missing(...)) {
                  inpList <- list(object, ...)
                  ## check on object class
                  checkRes <- sapply(inpList, is.rateReg)
                  if (any(! checkRes))
                      stop("Objects should be all of the 'rateReg' class.")
                  ## warning on different nObs
                  nObss <- sapply(inpList, nObsFun)
                  if (length(unique(nObss)) > 1)
                      warning(wrapMessages(
                          "Models are not all fitted to the same",
                          "number of observations.",
                          "Consider BIC instead?"
                      ))
                  abics <- sapply(inpList, abic, penal = k)
                  dfs <- sapply(inpList, sumDf)
                  val <- data.frame(df = dfs, AIC = abics)
                  Call <- match.call()
                  Call$k <- NULL
                  row.names(val) <- as.character(Call[- 1L])
                  return(val)
              }
              ## else return
              abic(object, penal = k)
          })


##' Bayesian Information Criterion (BIC)
##'
##' \code{BIC,rateReg-method} is an S4 class method calculating
##' Bayesian information criterion (BIC) or so-called
##' Schwarz's Bayesian criterion (SBC)
##' for one or several \code{rateReg} objects,
##' according to the formula
##' - 2 * log-likelihood + ln(nObs) * nPar,
##' where nPar represents the number of parameters in the fitted model
##' and nObs is the number of observations.
##'
##' When comparing models fitted by maximum likelihood to the same
##' data, the smaller the BIC, the better the fit.
##' \code{help(BIC, stats)} for other details.
##'
##' @param object An object used to dispatch a method.
##' @param ... More fitted model objects.
##' @return If just one object is provided, a numeric value representing
##' calculated BIC.
##' If multiple objects are provided, a data frame with rows
##' corresponding to the objects and columns \code{df} and \code{BIC},
##' where \code{df} means degree of freedom,
##' which is the number of parameters in the fitted model.
##' @aliases BIC,rateReg-method
##' @examples
##' ## See examples given in function rateReg.
##' @seealso
##' \code{\link{rateReg}} for model fitting;
##' \code{\link{summary,rateReg-method}} for summary of a fitted model;
##' \code{\link{AIC,rateReg-method}} for AIC.
##' @importFrom stats BIC
##' @export
setMethod(f = "BIC", signature = "rateReg",
          definition = function(object, ...) {
              if (! missing(...)) {
                  inpList <- list(object, ...)
                  ## check on object class
                  checkRes <- sapply(inpList, is.rateReg)
                  if (any(! checkRes))
                      stop("Objects should be all of the 'rateReg' class.")
                  nObss <- sapply(inpList, nObsFun)
                  k <- log(nObss)
                  abics <- sapply(seq_along(inpList), function(ind) {
                      abic(object = inpList[[ind]], penal = k[ind])
                  })
                  dfs <- sapply(inpList, sumDf)
                  val <- data.frame(df = dfs, BIC = abics)
                  Call <- match.call()
                  Call$k <- NULL
                  row.names(val) <- as.character(Call[- 1L])
                  return(val)
              }
              ## else return
              abic(object, penal = log(object@nObs))
          })



### internal functions =========================================================
sumDf <- function(object) {
    sum(do.call("c", object@spline$df))
}

abic <- function(object, penal) {
    - 2 * object@logL + penal * sumDf(object)
}

nObsFun <- function(object) {
    object@nObs
}

Try the reda package in your browser

Any scripts or data that you put into this service are public.

reda documentation built on July 9, 2022, 1:06 a.m.