Nothing
##
## R package reda by Wenjie Wang, Haoda Fu, and Jun Yan
## Copyright (C) 2015-2022
##
## This file is part of the R package reda.
##
## The R package reda is free software: You can redistribute it and/or
## modify it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or any later
## version (at your option). See the GNU General Public License at
## <https://www.gnu.org/licenses/> for details.
##
## The R package reda is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
##
## collation after class.R
##' @include class.R
NULL
##' Akaike Information Criterion (AIC)
##'
##' \code{AIC,rateReg-method} is an S4 class method calculating Akaike
##' information criterion (AIC) for one or several \code{rateReg} objects,
##' according to the formula - 2 * log-likelihood + 2 * nPar, where nPar
##' represents the number of parameters in the fitted model.
##'
##' When comparing models fitted by maximum likelihood to the same data, the
##' smaller the AIC, the better the fit. A friendly warning will be thrown out
##' if the numbers of observation were different in the model comparison.
##' \code{help(AIC, stats)} for other details.
##'
##' @param object An object used to dispatch a method.
##' @param ... Optionally more fitted model objects.
##' @param k An optional numeric value used as the penalty per parameter. The
##' default \code{k = 2} is the classic AIC.
##'
##' @return If just one object is provided, a numeric value representing
##' calculated AIC. If multiple objects are provided, a data frame with
##' rows corresponding to the objects and columns \code{df} and \code{AIC},
##' where \code{df} means degree of freedom, which is the number of
##' parameters in the fitted model.
##'
##' @aliases AIC,rateReg-method
##'
##' @examples
##' ## See examples given in function rateReg.
##'
##' @seealso
##' \code{\link{rateReg}} for model fitting;
##' \code{\link{summary,rateReg-method}} for summary of a fitted model;
##' \code{\link{BIC,rateReg-method}} for BIC.
##'
##' @importFrom stats AIC
##' @export
setMethod(f = "AIC", signature = "rateReg",
definition = function(object, ..., k = 2) {
if (! missing(...)) {
inpList <- list(object, ...)
## check on object class
checkRes <- sapply(inpList, is.rateReg)
if (any(! checkRes))
stop("Objects should be all of the 'rateReg' class.")
## warning on different nObs
nObss <- sapply(inpList, nObsFun)
if (length(unique(nObss)) > 1)
warning(wrapMessages(
"Models are not all fitted to the same",
"number of observations.",
"Consider BIC instead?"
))
abics <- sapply(inpList, abic, penal = k)
dfs <- sapply(inpList, sumDf)
val <- data.frame(df = dfs, AIC = abics)
Call <- match.call()
Call$k <- NULL
row.names(val) <- as.character(Call[- 1L])
return(val)
}
## else return
abic(object, penal = k)
})
##' Bayesian Information Criterion (BIC)
##'
##' \code{BIC,rateReg-method} is an S4 class method calculating
##' Bayesian information criterion (BIC) or so-called
##' Schwarz's Bayesian criterion (SBC)
##' for one or several \code{rateReg} objects,
##' according to the formula
##' - 2 * log-likelihood + ln(nObs) * nPar,
##' where nPar represents the number of parameters in the fitted model
##' and nObs is the number of observations.
##'
##' When comparing models fitted by maximum likelihood to the same
##' data, the smaller the BIC, the better the fit.
##' \code{help(BIC, stats)} for other details.
##'
##' @param object An object used to dispatch a method.
##' @param ... More fitted model objects.
##' @return If just one object is provided, a numeric value representing
##' calculated BIC.
##' If multiple objects are provided, a data frame with rows
##' corresponding to the objects and columns \code{df} and \code{BIC},
##' where \code{df} means degree of freedom,
##' which is the number of parameters in the fitted model.
##' @aliases BIC,rateReg-method
##' @examples
##' ## See examples given in function rateReg.
##' @seealso
##' \code{\link{rateReg}} for model fitting;
##' \code{\link{summary,rateReg-method}} for summary of a fitted model;
##' \code{\link{AIC,rateReg-method}} for AIC.
##' @importFrom stats BIC
##' @export
setMethod(f = "BIC", signature = "rateReg",
definition = function(object, ...) {
if (! missing(...)) {
inpList <- list(object, ...)
## check on object class
checkRes <- sapply(inpList, is.rateReg)
if (any(! checkRes))
stop("Objects should be all of the 'rateReg' class.")
nObss <- sapply(inpList, nObsFun)
k <- log(nObss)
abics <- sapply(seq_along(inpList), function(ind) {
abic(object = inpList[[ind]], penal = k[ind])
})
dfs <- sapply(inpList, sumDf)
val <- data.frame(df = dfs, BIC = abics)
Call <- match.call()
Call$k <- NULL
row.names(val) <- as.character(Call[- 1L])
return(val)
}
## else return
abic(object, penal = log(object@nObs))
})
### internal functions =========================================================
sumDf <- function(object) {
sum(do.call("c", object@spline$df))
}
abic <- function(object, penal) {
- 2 * object@logL + penal * sumDf(object)
}
nObsFun <- function(object) {
object@nObs
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.