Nothing
#' Value Matching
#'
#' @param x value to search
#' @param table table of values
#'
#' @return the opposite of x %in% table
#' @export
#'
#' @examples
#' 1:10 %in% c(1, 3, 5, 9)
#' 1:10 %nin% c(1, 3, 5, 9)
"%nin%" <- function(x, table) {
!(x %in% table)
}
#' Find the closest point of the FIELD grid to the specified position
#'
#' @param x vector of coordinates in the form longitude/latitude data frame
#' @param lat alternatively, x and lat can be vector of the same length
#' @param closest an integer to specify the number of point to output.
#' @param ... currently unused
#'
#' @return a list with two components: the closest point(s) of the grid and the distance (s).
#' @export
#'
#' @examples
#' semrev_west <- closest_point_field(c(-2.786, 47.239))
#' semrev_west
closest_point_field <- function(x, lat = NULL, closest = 1L, ...) {
if (!is.null(lat)) {
if (!(length(x) == length(lat))) {
stop("If 'lat' is provided, it sould be the same length as 'x'.")
}
return(closest_point_field(cbind(x, lat), lat = NULL, closest = closest, ...))
}
# Concert the input to a matrix with 2 columns, one point per line
x <- matrix(x, ncol = 2)
if (!is.numeric(closest) || closest < 1L) {
stop("'closest' must be an integer greater than 1.")
}
# Compute the distance matrix between the points and Resourcecode's grid
dist <- geosphere::distm(x, resourcecodedata::rscd_field[, c(2, 3)])
if (closest == 1L) {
ind_min <- apply(dist, 1, which.min)
} else {
ind_min <- apply(dist, 1, function(distances) {
order(distances)[1:closest]
})
}
distance <- matrix(NA, NROW(x), closest)
for (p in seq_len(NROW(x))) {
distance[p, ] <- if (closest == 1) {
dist[p, ind_min[p]]
} else {
dist[p, ind_min[, p]]
}
}
return(list(
points = t(ind_min),
distances = distance
))
}
#' Find the closest point of the SPEC grid to the specified position
#'
#' @param x vector of coordinates in the form longitude/latitude data frame
#' @param lat alternatively, x and lat can be vector of the same length
#' @param closest an integer to specify the number of point to output.
#' @param ... currently unused
#'
#' @return a list with two components: the closest point(s) of the grid and the distance (s).
#' @export
#'
#' @examples
#' semrev_west <- closest_point_spec(c(-2.786, 47.239))
#' semrev_west
closest_point_spec <- function(x, lat = NULL, closest = 1L, ...) {
if (!is.null(lat)) {
if (!(length(x) == length(lat))) {
stop("If 'lat' is provided, it sould be the same length as 'x'.")
}
return(closest_point_spec(cbind(x, lat), lat = NULL, closest = closest, ...))
}
# Concert the input to a matrix with 2 columns, one point per line
x <- matrix(x, ncol = 2)
if (!is.numeric(closest) || closest < 1L) {
stop("'closest' must be an integer greater than 1.")
}
# Compute the distance matrix between the points and Resourcecode's grid
dist <- geosphere::distm(x, resourcecodedata::rscd_spectral[, c(1, 2)])
if (closest == 1L) {
ind_min <- apply(dist, 1, which.min)
} else {
ind_min <- apply(dist, 1, function(distances) {
order(distances)[1:closest]
})
}
distance <- matrix(NA, NROW(x), closest)
for (p in seq_len(NROW(x))) {
distance[p, ] <- if (closest == 1) {
dist[p, ind_min[p]]
} else {
dist[p, ind_min[, p]]
}
}
return(list(
points = t(ind_min),
distances = distance
))
}
#' Convert u/v to meteorological wind speed and direction
#'
#' Converts wind or current zonal and meridional velocity components to
#' magnitude and direction according to meteorological convention.
#'
#' @param u zonal velocity (1D vector) or matrix with zonal and meridional velocity (Nx2 matrix)
#' @param v meridional velocity (1D vector)
#' @param names names to construct the resulting data.frame
#'
#' @return a Nx2 data.frame with the norm and direction (meteorological convention)
#' @export
#'
#' @examples
#' u <- matrix(rnorm(200), nrow = 100, ncol = 2)
#' vdir <- zmcomp2metconv(u)
zmcomp2metconv <- function(u, v = NULL, names = c("wspd", "wdir")) {
if (is.vector(u)) {
stopifnot(length(v) == length(u))
u <- cbind(u, v)
}
stopifnot(is.matrix(u) & dim(u)[2] == 2)
speed <- sqrt(u[, 1]^2 + u[, 2]^2)
direction <- (270 - atan2(u[, 2], u[, 1]) * 180 / pi) %% 360
out <- data.frame(speed, direction)
names(out) <- names
return(out)
}
#' Convert meteorological wind speed and direction to u/v components
#'
#' @description
#' Converts wind speed (magnitude) and direction (in degrees, meteorological
#' convention: direction from which the wind blows, measured clockwise from north)
#' into zonal (u) and meridional (v) components.
#'
#' @param speed Numeric vector of wind speeds.
#' @param direction Numeric vector of wind directions in degrees (0° = from north,
#' 90° = from east, 180° = from south, 270° = from west).
#' @param names (optional) ames to construct the resulting data.frame.
#'
#' @return A data.frame with two columns:
#' \describe{
#' \item{u}{Zonal wind component (m/s), positive eastward.}
#' \item{v}{Meridional wind component (m/s), positive northward.}
#' }
#'
#' @examples
#' # Example 1: North wind of 10 m/s (blowing southward)
#' metconv2zmcomp(10, 0)
#'
#' # Example 2: East wind of 5 m/s (blowing westward)
#' metconv2zmcomp(5, 90)
#'
#' # Example 3: South wind of 8 m/s (blowing northward)
#' metconv2zmcomp(8, 180)
#'
#' @export
metconv2zmcomp <- function(speed, direction, names = c("uwnd", "vwnd")) {
# Convert to radians
dir_rad <- direction * pi / 180
# Components
u <- -speed * sin(dir_rad)
v <- -speed * cos(dir_rad)
out <- data.frame(u = u, v = v)
names(out) <- names
out
}
#' JONWSAP spectrum
#'
#' Creates a JONWSAP density spectrum (one-sided), defined by its integral parameters.
#'
#' Reference :
#' - O.G.Houmb and T.Overvik, "Parametrization of Wave Spectra and Long Term
#' Joint Distribution of Wave Height and Period,"
#' in Proceedings, First International Conference
#' on Behaviour of Offshore Structures (BOSS), Trondheim 1976.
#' 23rd International Towing Tank Conference, vol. II, pp. 544-551
#' - ITTC Committee, 2002, "The Specialist Committee on Waves -
#' Final Report and Recommendations to the 23rd ITTC",
#' Proc. ITTC, vol. II, pp. 505-736.
#'
#' @param hs Hs (default: 5m)
#' @param tp Period (default: 10s)
#' @param fmax higher frequency of the spectrum or
#' vector of frequencies (default to resourcecode frequency vector)
#' @param df frequency step (unused if fmax=vector of frequencies)
#' @param gam peak enhancement factor (default: 3.3)
#'
#' @return Density spectrum with corresponding parameters
#' @export
#'
#' @examples
#' S1 <- jonswap(tp = 15)
#' S2 <- jonswap(tp = 15, fmax = 0.95, df = 0.003)
#' plot(S1, type = "l", ylim = c(0, 72))
#' lines(S2, col = "red")
#' abline(v = 1 / 15)
jonswap <- function(hs = 5, tp = 15, fmax = rscd_freq, df = NULL, gam = 3.3) {
if (length(fmax) > 1) {
# Case when the frequency vector if given
freq <- fmax
fmin <- min(freq)
fmax <- max(freq)
df <- min(diff(freq))
# generate a uniform-sampling to ease computations:
frq <- seq(from = fmin, to = fmax + df, by = df)
} else {
if (is.null(df)) {
stop("df must be provided when fmax is a single value")
}
fmin <- df
frq <- freq <- seq(from = df, to = fmax + df, by = df)
}
nptsp <- length(frq)
# Stops if the Gamma parameter is lower than 1
if (gam < 1) {
stop("Gamma parameter `gam` should be greater than 1")
}
# Compute the parameters of the spectrum
fm <- 1 / tp
lgam <- log(gam)
fr <- frq * tp
ifm <- trunc(fm / df)
# sigma = c(.07*ones(1,ifm),.09*ones(1,nptsp-ifm))
# sigma=rep(c(0.07,0.09),c(ifm,nptsp-ifm))
sigma <- c(0.07 * rep(1, ifm), 0.09 * rep(1, nptsp - ifm))
frm4 <- fr^-4
sp <- (1 - fr) / sigma
sp <- exp(-0.5 * (sp^2))
sp <- (frm4 / fr) * exp(-1.25 * frm4) * exp(lgam * sp)
sp <- sp * (hs / 4)^2 / sum(sp * df)
sp <- Re(c(0, sp))
sp <- sp[1:nptsp]
fr <- c(0, frq)
fr <- fr[1:nptsp]
sp <- stats::approx(frq, sp, freq)
names(sp) <- c("freq", "spec")
attr(sp, "Note") <- paste0(
"JONSWAP Spectrum, Hs=",
hs,
", Tp=",
tp,
", gamma=",
gam
)
return(tibble::as_tibble(sp))
}
#' Mean Direction
#'
#' Function for computing the (weighted) arithmetic mean of
#' directional data in \strong{meteorological convention}.
#'
#' @param directions numeric vector of directions, in degree, 0° being the North
#' @param weights numeric vector, usually wind speed of wave height.
#'
#' @returns
#' The (weighted) mean of the values in \code{directions} is computed.
#'
#' @export
#'
#' @examples
#' # Test with some wind directions (unweighted)
#' wind_directions <- c(10, 20, 350, 5, 15) # Directions mostly around North
#' mean_dir <- mean_direction(wind_directions)
#' cat("Mean wind direction (unweighted):", round(mean_dir, 1), "degrees\n")
# Test with wind speeds as weights
#' wind_directions <- c(350, 10, 20, 340, 30) # Directions around North
#' wind_speeds <- c(15, 5, 2, 12, 3) # Higher speeds for directions closer to North
#' mean_dir_weighted <- mean_direction(wind_directions, wind_speeds)
#' cat("Mean wind direction (weighted):", round(mean_dir_weighted, 1), "degrees\n")
#'
#' # Compare weighted vs unweighted for the same data
#' mean_dir_unweighted <- mean_direction(wind_directions)
#' cat("Same data unweighted:", round(mean_dir_unweighted, 1), "degrees\n")
mean_direction <- function(directions, weights = NULL) {
# Verify that directions are numeric
if (!is.numeric(directions)) {
stop("'directions' must be numeric")
}
# If weights provided, check they have the same length as directions
if (!is.null(weights)) {
if (length(directions) != length(weights)) {
stop("Length of 'directions' and 'speeds' must be equal")
}
# Verify that weights are numeric
if (!is.numeric(weights)) {
stop("'weights' must be numeric")
}
valid_indices <- !is.na(directions) & !is.na(weights)
directions <- directions[valid_indices]
weights <- weights[valid_indices]
} else {
# Remove NA values from directions only
directions <- directions[!is.na(directions)]
}
# Check for negative weights (which would cause issues with weighting)
if (any(weights < 0)) {
warning("Negative weights detected. Using absolute values.")
weights <- abs(weights)
}
# Ensure directions are in [0, 360) range
directions <- directions %% 360
# Check if we have any valid directions
if (length(directions) == 0) {
return(numeric(0))
}
# Set default weights (equal weighting) if weights not provided
if (is.null(weights)) {
weights <- rep(1, length(directions))
}
# Convert degrees to radians
radians <- directions * pi / 180
# Convert to unit vectors (x = sin, y = cos for meteorological convention)
# In meteorological convention: North = 0°, East = 90°
x_components <- sin(radians)
y_components <- cos(radians)
# Calculate weighted mean components
mean_x <- stats::weighted.mean(x_components, w = weights)
mean_y <- stats::weighted.mean(y_components, w = weights)
# Calculate mean direction in radians
mean_radians <- atan2(mean_x, mean_y)
# Convert back to degrees
mean_degrees <- mean_radians * 180 / pi
# Ensure result is in [0, 360) range using modulo
mean_degrees <- mean_degrees %% 360
return(mean_degrees)
}
#' Directional binning
#'
#' Cuts direction vector into directional bins
# with North bin always centred on 0 degrees.
#'
#' @param directions vector of directions to be binned, in degree, 0° being the North.
#' @param n_bins number of bins, default: 8 sectors.
#' @param labels optional character vector giving the sectors names.
#'
#' @returns
#' a factor vector the same size as \code{directions} with the values binned into sectors.
#'
#' @export
#'
#' @examples
#' # Example usage and demonstration
#' set.seed(123)
#' directions <- runif(20, 0, 360)
#'
#' # Test with different numbers of bins
#' cat("Original directions:\n")
#' print(round(directions, 1))
#'
#' cat("\n8 bins (default):\n")
#' bins_8 <- cut_directions(directions, n_bins = 8)
#' print(bins_8)
#'
#' cat("\n4 bins:\n")
#' bins_4 <- cut_directions(directions, n_bins = 4)
#' print(bins_4)
cut_directions <- function(directions, n_bins = 8, labels = NULL) {
# Validate inputs
if (!is.numeric(directions)) {
stop("'directions' must be numeric")
}
if (length(directions) == 0) {
return(numeric(0))
}
if (n_bins < 2) {
stop("'n_bins' must be at least 2")
}
# Normalize directions to 0-360 range
directions <- directions %% 360
# Calculate bin width
bin_width <- 360 / n_bins
half_bin <- bin_width / 2
# Create breaks - North bin is centered on 0
# So breaks go from -half_bin to 360-half_bin
breaks <- seq(-half_bin, 360 - half_bin, by = bin_width)
# Adjust directions for the split North bin
# Values in the upper part of North bin (360-half_bin to 360)
# need to be mapped to negative values (-half_bin to 0)
adjusted_directions <- ifelse(
directions > (360 - half_bin),
directions - 360,
directions
)
# Create labels if not provided
if (is.null(labels)) {
# Calculate center angles for each bin
centers <- seq(0, 360 - bin_width, by = bin_width)
# Create descriptive labels based on number of bins
if (n_bins == 4) {
labels <- c("N", "E", "S", "W")
} else if (n_bins == 8) {
labels <- c("N", "NE", "E", "SE", "S", "SW", "W", "NW")
} else if (n_bins == 16) {
labels <- c(
"N",
"NNE",
"NE",
"ENE",
"E",
"ESE",
"SE",
"SSE",
"S",
"SSW",
"SW",
"WSW",
"W",
"WNW",
"NW",
"NNW"
)
} else {
# Generic labels with center angles
labels <- paste0("Bin_", sprintf("%.0f", centers))
}
}
# Cut the adjusted directions
result <- cut(
adjusted_directions,
breaks = breaks,
labels = labels,
include.lowest = TRUE,
right = FALSE
)
return(result)
}
#' Get season from date time object
#'
#' @param datetime a POSIXct vector from with the season is constructed
#' @param definition the definition used to compute the season. See details section.
#' @param hemisphere in the Southern hemisphere, seasons are reversed compared to the Northern one.
#' @param labels optional, a character vector of length fours with the seasons' names.
#'
#' @returns a Factor vector with 4 levels depending on the definitions (and labels if provided)
#' @export
#'
#' @details
#' Available Definitions:
#' - meteorological: Standard seasons (Dec-Feb = Winter, etc.)
#' - astronomical: Based on equinoxes/solstices
#' - djf: Dec-Jan-Feb, Mar-Apr-May, Jun-Jul-Aug, Sep-Oct-Nov
#' - jfm: Jan-Feb-Mar, Apr-May-Jun, Jul-Aug-Sep, Oct-Nov-Dec
#' - fma: Feb-Mar-Apr, May-Jun-Jul, Aug-Sep-Oct, Nov-Dec-Jan
#' - amj, jas, ond: Alternative starting points for quarterly seasons
#'
#' @examples
#' dates <- seq(
#' from = as.POSIXct("2023-01-15"),
#' to = as.POSIXct("2023-12-15"),
#' by = "month"
#' )
#' cut_seasons(dates)
cut_seasons <- function(datetime,
definition = "meteorological",
hemisphere = "northern",
labels = NULL) {
# Validate inputs
if (!inherits(datetime, "POSIXct")) {
stop("datetime must be a POSIXct object")
}
if (!definition %in% c(
"meteorological", "astronomical",
"djf", "jfm", "amj", "jas", "ond", "fma"
)) {
stop("definition must be one of: 'meteorological', 'astronomical',
'djf', 'jfm', 'amj', 'jas', 'ond', 'fma'")
}
if (!hemisphere %in% c("northern", "southern")) {
stop("hemisphere must be 'northern' or 'southern'")
}
# Extract month and day-of-year
month <- as.numeric(format(datetime, "%m"))
yday <- as.numeric(format(datetime, "%j"))
year <- as.numeric(format(datetime, "%Y"))
# Define season boundaries based on definition
if (definition == "meteorological") {
# Dec-Jan-Feb = Winter, Mar-Apr-May = Spring, etc.
season_month <- c(12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
season_labels <- c(
"Winter", "Winter", "Winter", "Spring", "Spring", "Spring",
"Summer", "Summer", "Summer", "Autumn", "Autumn", "Autumn"
)
seasons <- season_labels[match(month, season_month)]
} else if (definition == "astronomical") {
# Based on equinoxes and solstices (approximate dates)
# Northern hemisphere: Dec 21 - Mar 20 = Winter, etc.
seasons <- rep(NA, length(datetime))
for (i in seq_along(datetime)) {
y <- year[i]
d <- yday[i]
# Approximate astronomical dates (can vary by 1-2 days)
spring_equinox <- as.numeric(format(as.Date(paste(y, "03", "20", sep = "-")), "%j"))
summer_solstice <- as.numeric(format(as.Date(paste(y, "06", "21", sep = "-")), "%j"))
autumn_equinox <- as.numeric(format(as.Date(paste(y, "09", "22", sep = "-")), "%j"))
winter_solstice <- as.numeric(format(as.Date(paste(y, "12", "21", sep = "-")), "%j"))
if (d >= winter_solstice || d < spring_equinox) {
seasons[i] <- "Winter"
} else if (d >= spring_equinox && d < summer_solstice) {
seasons[i] <- "Spring"
} else if (d >= summer_solstice && d < autumn_equinox) {
seasons[i] <- "Summer"
} else {
seasons[i] <- "Autumn"
}
}
} else if (definition == "djf") {
# Dec-Jan-Feb, Mar-Apr-May, Jun-Jul-Aug, Sep-Oct-Nov
season_month <- c(12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
season_labels <- c(
"DJF", "DJF", "DJF", "MAM", "MAM", "MAM",
"JJA", "JJA", "JJA", "SON", "SON", "SON"
)
seasons <- season_labels[match(month, season_month)]
} else if (definition == "jfm") {
# Jan-Feb-Mar, Apr-May-Jun, Jul-Aug-Sep, Oct-Nov-Dec
season_month <- 1:12
season_labels <- c(
"JFM", "JFM", "JFM", "AMJ", "AMJ", "AMJ",
"JAS", "JAS", "JAS", "OND", "OND", "OND"
)
seasons <- season_labels[match(month, season_month)]
} else if (definition == "amj") {
# Apr-May-Jun, Jul-Aug-Sep, Oct-Nov-Dec, Jan-Feb-Mar
season_month <- 1:12
season_labels <- c(
"JFM", "JFM", "JFM", "AMJ", "AMJ", "AMJ",
"JAS", "JAS", "JAS", "OND", "OND", "OND"
)
seasons <- season_labels[match(month, season_month)]
} else if (definition == "jas") {
# Jul-Aug-Sep, Oct-Nov-Dec, Jan-Feb-Mar, Apr-May-Jun
season_month <- 1:12
season_labels <- c(
"JFM", "JFM", "JFM", "AMJ", "AMJ", "AMJ",
"JAS", "JAS", "JAS", "OND", "OND", "OND"
)
seasons <- season_labels[match(month, season_month)]
} else if (definition == "ond") {
# Oct-Nov-Dec, Jan-Feb-Mar, Apr-May-Jun, Jul-Aug-Sep
season_month <- 1:12
season_labels <- c(
"JFM", "JFM", "JFM", "AMJ", "AMJ", "AMJ",
"JAS", "JAS", "JAS", "OND", "OND", "OND"
)
seasons <- season_labels[match(month, season_month)]
} else if (definition == "fma") {
# Feb-Mar-Apr, May-Jun-Jul, Aug-Sep-Oct, Nov-Dec-Jan
season_month <- 1:12
season_labels <- c(
"NDJ", "FMA", "FMA", "FMA", "MJJ", "MJJ",
"MJJ", "ASO", "ASO", "ASO", "NDJ", "NDJ"
)
seasons <- season_labels[match(month, season_month)]
}
# Flip seasons for southern hemisphere
if (hemisphere == "southern" && definition %in% c("meteorological", "astronomical")) {
season_mapping <- c(
"Spring" = "Autumn", "Summer" = "Winter",
"Autumn" = "Spring", "Winter" = "Summer"
)
seasons <- season_mapping[seasons]
}
# Apply custom labels if provided
if (!is.null(labels)) {
unique_seasons <- unique(seasons[!is.na(seasons)])
if (length(labels) != length(unique_seasons)) {
stop(paste("Number of labels (", length(labels),
") must match number of unique seasons (", length(unique_seasons), ")",
sep = ""
))
}
# Create mapping from old to new labels
label_mapping <- stats::setNames(labels, sort(unique_seasons))
seasons <- label_mapping[seasons]
}
# Convert to factor with logical level ordering
if (definition == "meteorological" || definition == "astronomical") {
if (hemisphere == "northern") {
level_order <- c("Spring", "Summer", "Autumn", "Winter")
} else {
level_order <- c("Autumn", "Winter", "Spring", "Summer")
}
} else if (definition == "djf") {
level_order <- c("DJF", "MAM", "JJA", "SON")
} else if (definition == "jfm") {
level_order <- c("JFM", "AMJ", "JAS", "OND")
} else if (definition == "fma") {
level_order <- c("FMA", "MJJ", "ASO", "NDJ")
} else {
level_order <- c("JFM", "AMJ", "JAS", "OND") # Default for amj, jas, ond
}
# Apply custom labels to level order if provided
if (!is.null(labels)) {
level_order <- labels[match(level_order, sort(unique_seasons))]
}
result <- factor(seasons, levels = level_order)
return(result)
}
#' Compute Fractional Day of Year from POSIXct
#'
#' Calculates the fractional day of year from a POSIXct datetime object.
#' The fractional day is zero-indexed, starting at 0 for January 1st at
#' midnight and ending at approximately 365.958 for December 31st at 23:00
#' in a non-leap year (or 366.958 in a leap year).
#'
#' @param datetime A POSIXct object or vector of POSIXct objects representing
#' date-time values. Must have a timezone attribute.
#'
#' @return A numeric vector of the same length as \code{datetime}, containing
#' fractional day of year values. January 1st at midnight corresponds to 0,
#' and each hour adds approximately 0.04167 (1/24) to the value.
#'
#' @details
#' The function computes the time difference in hours between the input
#' datetime and midnight on January 1st of the same year, then divides by 24
#' to obtain fractional days. The calculation accounts for leap years
#' automatically.
#'
#' @examples
#' dates <- seq(
#' from = as.POSIXct("2024-01-01 00:00:00", tz = "UTC"),
#' to = as.POSIXct("2024-01-02 00:00:00", tz = "UTC"),
#' by = "6 hours"
#' )
#' fractional_day_of_year(dates) # Returns 0.00, 0.25, 0.50, 0.75, 1.00
#'
#' # End of year
#' dt_end <- as.POSIXct("2024-12-31 23:00:00", tz = "UTC")
#' fractional_day_of_year(dt_end) # Returns ~365.958
#'
#' @export
fractional_day_of_year <- function(datetime) {
# Input validation
if (!inherits(datetime, "POSIXct")) {
stop("datetime must be a POSIXct object")
}
# Extract timezone (defaults to UTC if missing)
tz <- attr(datetime, "tzone")
if (is.null(tz) || tz == "") tz <- "UTC"
# Get the year for each datetime
year <- as.POSIXlt(datetime, tz = tz)$year + 1900
# Initialize output
fractional_day <- rep(NA_real_, length(datetime))
# Process only non-NA entries
valid <- !is.na(datetime)
if (any(valid)) {
# Start of the year in same timezone
start_of_year <- as.POSIXct(
paste0(year[valid], "-01-01 00:00:00"),
tz = tz
)
# Compute time difference in hours
hours_diff <- as.numeric(difftime(datetime[valid], start_of_year, units = "hours"))
# Convert to fractional days
fractional_day[valid] <- hours_diff / 24
}
fractional_day
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.