Nothing
library(testthat)
Sys.setenv('OMP_THREAD_LIMIT'=2)
library(rlibkriging)
library(RobustGaSP)
kernel_type = function(kernel) {
if (kernel=="matern3_2") return("matern_3_2")
if (kernel=="matern5_2") return("matern_5_2")
stop(paste0("Cannot use ",kernel))
}
kernel_type_num = function(kernel) {
if (kernel=="matern3_2") return(2)
if (kernel=="matern5_2") return(3)
stop(paste0("Cannot use ",kernel))
}
for (kernel in c("matern5_2","matern3_2")) {
context(paste0("Check Marginal Posterior for kernel ",kernel))
f = function(x) 1-1/2*(sin(12*x)/(1+x)+2*cos(7*x)*x^5+0.7)
plot(f)
n <- 15
set.seed(123)
X <- as.matrix(runif(n))
y = f(X) + rnorm(n,0,0.1)
points(X,y)
k = RobustGaSP::rgasp(design=X,response=y,kernel_type=kernel_type(kernel), nugget.est=TRUE)
lmp = function(theta,nugget_est=FALSE) {
#cat("theta: ",theta,"\n")
param = c(log(1/theta),k@nugget)
if (!nugget_est) param = param[-length(param)]
#cat("log_marginal_lik\n")
lml = RobustGaSP::log_marginal_lik(param=param,nugget=k@nugget,nugget_est=nugget_est,
R0=k@R0,X=k@X,zero_mean=k@zero_mean,output=k@output,kernel_type=kernel_type_num(kernel),alpha=k@alpha)
#cat(" lml: ",lml,"\n")
#cat("log_approx_ref_prior\n")
larp = RobustGaSP::log_approx_ref_prior(param=param,nugget=k@nugget,nugget_est=nugget_est,
CL=k@CL,a=0.2,b=1/(length(y))^{1/dim(as.matrix(X))[2]}*(0.2+dim(as.matrix(X))[2]))
#cat(" larp: ",larp,"\n")
return(lml+larp)
}
plot(Vectorize(lmp),ylab="LMP",xlab="theta",xlim=c(0.01,2),ylim=c(-5,5))
abline(v=1/k@beta_hat)
lmp_deriv = function(theta, nugget_est=FALSE) {
#cat("theta: ",theta,"\n")
param = c(log(1/theta),k@nugget)
if (!nugget_est) param = param[-length(param)]
#cat("log_marginal_lik_deriv\n")
lml_d = RobustGaSP::log_marginal_lik_deriv(param=param,nugget=k@nugget,nugget_est=nugget_est,
R0=k@R0,X=k@X,zero_mean=k@zero_mean,output=k@output,kernel_type=kernel_type_num(kernel),alpha=k@alpha)
#cat(" lml_d: ",lml_d,"\n")
#cat("log_approx_ref_prior_deriv\n")
larp_d = RobustGaSP::log_approx_ref_prior_deriv(param=param,nugget=k@nugget,nugget_est=nugget_est,
CL=k@CL,a=0.2,b=1/(length(y))^{1/dim(as.matrix(X))[2]}*(0.2+dim(as.matrix(X))[2]))
#cat(" larp_d: ",larp_d,"\n")
return((lml_d + larp_d)* 1/theta * (-1/theta))
}
for (x in seq(0.01,2,,11)){
arrows(x,lmp(x),x+.1,lmp(x)+.1*lmp_deriv(x))
}
#library(rlibkriging)
r <- NuggetKriging(y, X, kernel, objective="LMP")#,
#optim="none", parameters=list(theta = matrix(1/k@beta_hat), nugget=k@nugget*k@sigma2_hat,sigma2=k@sigma2_hat))
## Should be equal:
#lmp(1.0); lmp_deriv(1.0);
#logMargPostFun(r,1.0,return_grad = T)
#lmp(0.1); lmp_deriv(0.1);
#logMargPostFun(r,0.1,return_grad = T)
#ll2 = function(theta) logMargPostFun(r,theta)$logMargPost
# plot(Vectorize(ll2),col='red',add=T,xlim=c(0.01,2)) # FIXME fails with "error: chol(): decomposition failed"
alpha = r$sigma2()/(r$sigma2()+r$nugget()) #1/(1+k@nugget) #r$sigma2()/(r$nugget()+r$sigma2())
for (x in seq(0.01,2,,11)){
ll2x = logMargPostFun(r,c(x,alpha))$logMargPost
gll2x = logMargPostFun(r,c(x,alpha),return_grad = T)$logMargPostGrad[1]
arrows(x,ll2x,x+.1,ll2x+.1*gll2x,col='red')
}
#lmp_deriv(c(k@beta_hat,k@nugget), TRUE)
#logMargPostFun(r,c(1/k@beta_hat,1/(1+k@nugget)),return_grad = T)
#logMargPostFun(r,c(r$theta(),r$sigma2()/(r$sigma2()+r$nugget())),return_grad = T)
precision <- 1e-4 # the following tests should work with it, since the computations are analytical
x=.5
test_that(desc="logMargPost is the same that RobustGaSP one",
expect_equal(logMargPostFun(r,c(x,1/(1+k@nugget)))$logMargPost[1],lmp(x),tolerance = precision))
test_that(desc="logMargPost Grad is the same that RobustGaSP one",
expect_equal(logMargPostFun(r,c(x,1/(1+k@nugget)),return_grad = T)$logMargPostGrad[1],lmp_deriv(x),tolerance= precision))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.