Nothing
#' Non-Dominated Sorting in Genetic Algorithms
#'
#' Minimization of a fitness function using Non-Dominated Genetic algorithms
#' (NSGA). Local search using general-purpose optimisation algorithms can be
#' applied stochastically to exploit interesting regions.
#'
#' The Non-dominated genetic algorithms is a meta-heuristic proposed by
#' N. Srinivas and K. Deb in 1994. The purpose of the algorithms is to find an
#' efficient way to optimize multi-objectives functions (two or more).
#'
#' @param type the type of genetic algorithm to be run depending on the nature
#' of decision variables. Possible values are:
#' \describe{
#' \item{\code{"binary"}}{for binary representations of decision variables.}
#' \item{\code{"real-valued"}}{for optimization problems where the decision
#' variables are floating-point representations of real numbers.}
#' \item{\code{"permutation"}}{for problems that involves reordering of a list
#' of objects.}
#' }
#'
#' @param fitness the fitness function, any allowable R function which takes as
#' input an individual string representing a potential solution, and returns a
#' numerical value describing its “fitness”.
#' @param ... additional arguments to be passed to the fitness function. This
#' allows to write fitness functions that keep some variables fixed during the
#' search.
#' @param lower a vector of length equal to the decision variables providing the
#' lower bounds of the search space in case of real-valued or permutation
#' encoded optimizations.
#' @param upper a vector of length equal to the decision variables providing the
#' upper bounds of the search space in case of real-valued or permutation
#' encoded optimizations.
#' @param nBits a value specifying the number of bits to be used in binary
#' encoded optimizations.
#' @param population an R function for randomly generating an initial population.
#' See [nsga_Population()] for available functions.
#' @param selection an R function performing selection, i.e. a function which
#' generates a new population of individuals from the current population
#' probabilistically according to individual fitness.
#' See [nsga_Selection()] for available functions.
#' @param crossover an R function performing crossover, i.e. a function which
#' forms offsprings by combining part of the genetic information from
#' their parents. See [nsga_Crossover()] for available functions.
#' @param mutation an R function performing mutation, i.e. a function which
#' randomly alters the values of some genes in a parent chromosome.
#' See [nsga_Mutation()] for available functions.
#' @param popSize the population size.
#' @param nObj number of objective in the fitness function.
#' @param dshare the maximun phenotypic distance allowed between any two
#' individuals to become members of a niche.
#' @param pcrossover the probability of crossover between pairs of chromosomes.
#' Typically this is a large value and by default is set to 0.8.
#' @param pmutation the probability of mutation in a parent chromosome. Usually
#' mutation occurs with a small probability, and by default is set to 0.1.
#' @param maxiter the maximum number of iterations to run before the NSGA search
#' is halted.
#' @param run the number of consecutive generations without any improvement in
#' the best fitness value before the NSGA is stopped.
#' @param maxFitness the upper bound on the fitness function after that the NSGA
#' search is interrupted.
#' @param names a vector of character strings providing the names of decision
#' variables.
#' @param suggestions a matrix of solutions strings to be included in the
#' initial population. If provided the number of columns must match the number
#' of decision variables.
#' @param monitor a logical or an R function which takes as input the current
#' state of the nsga-class object and show the evolution of the search. By
#' default, for interactive sessions the function nsgaMonitor prints the average
#' and best fitness values at each iteration. If set to plot these information
#' are plotted on a graphical device. Other functions can be written by the user
#' and supplied as argument. In non interactive sessions, by default
#' monitor = FALSE so any output is suppressed.
#' @param summary If there will be a summary generation after generation.
#' @param seed an integer value containing the random number generator state.
#' This argument can be used to replicate the results of a NSGA search. Note
#' that if parallel computing is required, the doRNG package must be installed.
#'
#' @author Francisco Benitez
#' \email{benitezfj94@gmail.com}
#'
#' @references N. Srinivas and K. Deb, "Multiobjective Optimization Using
#' Nondominated Sorting in Genetic Algorithms, in Evolutionary Computation,
#' vol. 2, no. 3, pp. 221-248, Sept. 1994, doi: 10.1162/evco.1994.2.3.221.
#'
#' Scrucca, L. (2017) On some extensions to 'GA' package: hybrid optimisation,
#' parallelisation and islands evolution. The R Journal, 9/1, 187-206.
#' doi: 10.32614/RJ-2017-008
#'
#' @seealso [nsga2()], [nsga3()]
#'
#' @return Returns an object of class nsga1-class. See [nsga1-class] for a
#' description of available slots information.
#'
#' @examples
#' #Example
#' #Two Objectives - Real Valued
#' zdt1 <- function (x) {
#' if (is.null(dim(x))) {
#' x <- matrix(x, nrow = 1)
#' }
#' n <- ncol(x)
#' g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
#' return(cbind(x[, 1], g * (1 - sqrt(x[, 1]/g))))
#' }
#'
#' #Not run:
#' \dontrun{
#' result <- nsga(type = "real-valued",
#' fitness = zdt1,
#' lower = c(0,0),
#' upper = c(1,1),
#' popSize = 100,
#' dshare = 1,
#' monitor = FALSE,
#' maxiter = 500)
#' }
#'
#' @export
nsga <- function (type = c("binary", "real-valued", "permutation"),
fitness, ...,
lower, upper, nBits,
population = nsgaControl(type)$population,
selection = nsgaControl(type)$selection,
crossover = nsgaControl(type)$crossover,
mutation = nsgaControl(type)$mutation,
popSize = 50,
nObj = ncol(fitness(matrix(10000, ncol = 100, nrow = 100))),
dshare,
pcrossover = 0.8,
pmutation = 0.1,
maxiter = 100,
run = maxiter,
maxFitness = Inf,
names = NULL,
suggestions = NULL,
monitor = if (interactive()) nsgaMonitor else FALSE,
summary = FALSE,
seed = NULL)
{
call <- match.call()
type <- match.arg(type, choices = eval(formals(nsga2)$type))
callArgs <- list(...)
callArgs$strategy <- NULL
if (!is.function(population))
population <- get(population)
if (!is.function(selection))
selection <- get(selection)
if (!is.function(crossover))
crossover <- get(crossover)
if (!is.function(mutation))
mutation <- get(mutation)
if (missing(fitness)) {
stop("A fitness function must be provided")
}
if (!is.function(fitness)) {
stop("A fitness function must be provided")
}
if (popSize < 10) {
warning("The population size is less than 10.")
}
if (maxiter < 1) {
stop("The maximum number of iterations must be at least 1.")
}
if (pcrossover < 0 | pcrossover > 1) {
stop("Probability of crossover must be between 0 and 1.")
}
if (is.numeric(pmutation)) {
if (pmutation < 0 | pmutation > 1) {
stop("If numeric probability of mutation must be between 0 and 1.")
}
else if (!is.function(population)) {
stop("pmutation must be a numeric value in (0,1) or a function.")
}
}
if (missing(lower) & missing(upper) & missing(nBits)) {
stop("A lower and upper range of values (for 'real-valued' or 'permutation') or nBits (for 'binary') must be provided!")
}
if (is.null(nObj)) {
nObj <- ncol(fitness(matrix(10000, ncol = 100, nrow = 100)))
}
dum_Fitness <- matrix(NA, nrow = popSize, ncol = nObj);
initialDummy <- popSize
delta_dum <- 0.1 * initialDummy
switch(type,
binary = {
nBits <- as.vector(nBits)[1]
lower <- upper <- NA
nvars <- nBits
if (is.null(names)) names <- paste0("x", 1:nvars)
},
`real-valued` = {
lnames <- names(lower)
unames <- names(upper)
lower <- as.vector(lower)
upper <- as.vector(upper)
nBits <- NA
if (length(lower) != length(upper))
stop("lower and upper must be vector of the same length")
#if ((length(lower) != nObj) & (length(upper) != nObj))
# stop("The lower and upper limits must be vector of the same number of objectives")
nvars <- length(upper)
if (is.null(names) & !is.null(lnames))
names <- lnames
if (is.null(names) & !is.null(unames))
names <- unames
if (is.null(names))
names <- paste0("x", 1:nvars)
},
permutation = {
lower <- as.vector(lower)[1]
upper <- as.vector(upper)[1]
nBits <- NA
nvars <- length(seq.int(lower, upper))
if (is.null(names))
names <- paste0("x", 1:nvars)
}
)
if (is.null(suggestions)) {
suggestions <- matrix(nrow = 0, ncol = nvars)
} else {
if (is.vector(suggestions)) {
if (nvars > 1)
suggestions <- matrix(suggestions, nrow = 1)
else suggestions <- matrix(suggestions, ncol = 1)
}
else {
suggestions <- as.matrix(suggestions)
}
if (nvars != ncol(suggestions))
stop("Provided suggestions (ncol) matrix do not match number of variables of the problem!")
}
# check monitor arg
if (is.logical(monitor)) {
if (monitor) monitor <- nsgaMonitor
}
if (is.null(monitor)) monitor <- FALSE
# set seed for reproducibility
if (!is.null(seed))
set.seed(seed)
i. <- NULL #dummy to trick R CMD check
Fitness <- matrix(NA, nrow = popSize, ncol = nObj)
fitnessSummary <- vector("list", maxiter)
#Creacion del objetivo tipo nsga
object <- new("nsga1",
call = call,
type = type,
lower = lower,
upper = upper,
nBits = nBits,
names = if (is.null(names))
character()
else names,
popSize = popSize,
front = matrix(),
f = list(),
iter = 0,
run = 1,
maxiter = maxiter,
suggestions = suggestions,
population = matrix(),
pcrossover = pcrossover,
pmutation = if (is.numeric(pmutation))
pmutation
else NA,
dumFitness = dum_Fitness,
dShare = dshare,
deltaDummy = delta_dum,
fitness = Fitness,
summary = fitnessSummary)
#Generate initial population
if (maxiter == 0)
return(object)
switch(type,
binary = {
Pop <- matrix(as.double(NA), nrow = popSize, ncol = nBits)
},
`real-valued` = {
Pop <- matrix(as.double(NA), nrow = popSize, ncol = nvars)
},
permutation = {
Pop <- matrix(as.double(NA), nrow = popSize, ncol = nvars)
}
)
ng <- min(nrow(suggestions), popSize)
if (ng > 0) {
Pop[1:ng, ] <- suggestions
}
if (popSize > ng) {
Pop[(ng + 1):popSize, ] <- population(object)[1:(popSize - ng), ]
}
object@population <- Pop
for (i in seq_len(popSize)) {
if (is.na(Fitness[i])) {
fit <- do.call(fitness, c(list(Pop[i, ]), callArgs))
Fitness[i, ] <- fit
}
}
object@population <- Pop
object@fitness <- Fitness
#First Non-dominated Ranking
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
object@dumFitness <- sharing(object)
for (iter in seq_len(maxiter)) {
object@iter <- iter
#Selection Operator
if (is.function(selection)) {
sel <- selection(object, nObj)
Pop <- sel$population
Fitness <- sel$fitness
} else {
sel <- sample(1:popSize, size = popSize, replace = TRUE)
Pop <- object@population[sel, ]
Fitness <- object@fitness[sel, ]
}
object@population <- Pop
object@fitness <- Fitness
#Cross Operator
if (is.function(crossover) & pcrossover > 0) {
nmating <- floor(popSize / 2)
mating <- matrix(sample(1:(2 * nmating), size = (2 * nmating)), ncol = 2)
for (i in seq_len(nmating)) {
if (pcrossover > runif(1)) {
parents <- mating[i, ]
Crossover <- crossover(object, parents)
Pop[parents, ] <- Crossover$children
Fitness[parents, ] <- Crossover$fitness
}
}
}
object@population <- Pop
object@fitness <- Fitness
#Mutation Operator
pm <- if (is.function(pmutation)) {
pmutation(object)
} else {pmutation}
if (is.function(mutation) & pm > 0) {
for (i in seq_len(popSize)) {
if (pm > runif(1)) {
Mutation <- mutation(object, i)
Pop[i, ] <- Mutation
Fitness[i,] <- NA
}
}
}
object@population <- Pop
object@fitness <- Fitness
#Evaluate Fitness
for (i in seq_len(popSize)) {
if (is.na(Fitness[i])) {
fit <- do.call(fitness, c(list(Pop[i, ]), callArgs))
Fitness[i,] <- fit
}
}
object@population <- Pop
object@fitness <- Fitness
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
object@dumFitness <- sharing(object)
rm(out)
if (summary == TRUE) {
fitnessSummary[[iter]] <- progress(object, callArgs)
object@summary <- fitnessSummary
} else {
object@summary <- list(NULL)
}
#Plot front non-dominated by iteration
if (is.function(monitor)) {
monitor(object = object, number_objective = nObj)
}
if (max(Fitness, na.rm = TRUE) >= maxFitness)
break
if (object@iter == maxiter)
break
}
solution <- object
return(solution)
}
# @export
#' @rdname plot-methods
#' @aliases plot,nsga1-method
setMethod("plot", signature(x="nsga1", y="missing"), .get.plotting)
# @export
#' @rdname progress-methods
#' @aliases progress,nsga1-method
setMethod("progress", "nsga1", .nsga1.progress)
# @export
#' @rdname getDummyFitness-methods
#' @aliases getDummyFitness,nsga1-method
setMethod("getDummyFitness", "nsga1",
function(obj) {
cat("NSGA-I Dummy Fitness: \n")
cat("\n#========================================#\n")
print(obj@dumFitness)
n_dum <- ncol(obj@dumFitness)
dum_Fitness <- data.frame(obj@dumFitness)
colnames(dum_Fitness) <- sprintf("FitDummy_%s",seq(n_dum))
return(invisible(dum_Fitness))
}
)
# @export
#' @rdname print-methods
#' @aliases print,nsga1-method
setMethod("print", "nsga1",
function(x, ...) {
algorithm <- class(x)[1]
# Print
cat("\nSlots Configuration:\n")
print((slotNames(x)))
cat("\n#========================================#\n")
cat("\nTotal iterations: ", x@iter)
cat("\nRepresentation Type: ", x@type)
cat("\nPopulation size: ", x@popSize)
if (x@type == "binary") {
cat("\nNumber of Bits: ", x@nBits)
} else{
cat("\nLower Bounds: ", x@lower)
cat("\nLower Bounds: ", x@upper)
}
cat("\nDelta Distance (dShare): ", x@dShare)
cat("\nDistance of sharing function: ", x@deltaDummy)
cat("\nNumber of Nondominated Front: ", length(x@f[[1]]))
cat("\n#========================================#\n")
}
)
# @export
#' @rdname summary-methods
#' @aliases summary,nsga1-method
setMethod("summary", "nsga1",
function(object, ...){
callArgs <- list(...)
nullRP <- is.null(callArgs$reference_dirs)
# Calculate information for summary
first <- object@f[[1]]
first_front_fit <-
first_front_pop <- object@population[first, ]
nadir_point <- apply(object@fitness[first, ], 2, max)
#first_dum <- object@dumFitness[first, ] for nsga1 summary method
if("ecr" %in% rownames(utils::installed.packages())){
if (nullRP) {
cat("Warning! \nReference points not provided:\n
value necessary to evaluate GD and IGD.")
} else{
gd <- ecr::computeGenerationalDistance(t(object@fitness), t(callArgs$reference_dirs))
igd <- ecr::computeInvertedGenerationalDistance(t(object@fitness), t(callArgs$reference_dirs))
}
}
if("emoa" %in% rownames(utils::installed.packages())){
if(nullRP) {
cat("\nUsing the maximum in each dimension to evaluate Hypervolumen")
reference_point <- nadir_point
} else {reference_point <- apply(callArgs$reference_dirs, 2, max)}
hv <- emoa::dominated_hypervolume(points = t(object@fitness[first, ]), ref = reference_point)
}
cat("\nSummary of NSGA-I run")
cat("\n#====================================")
cat("\nNumber of Objectives evaluated: ", ncol(object@fitness))
cat("\nTotal iterations: ", object@iter)
cat("\nPopulation size: ", object@popSize)
#cat("\nFeasible points found: ", nfeas,paste0("(", signif(100 * nfeas / npts, 3), "%"),"of total)")
cat("\nNondominated points found: ", length(first),
paste0("(", signif(100 * length(first) / object@popSize, 3), "%"),
"of total)")
cat("\nShare Distance: ", object@dShare)
cat("\nSharing Values calculated: ", object@deltaDummy)
#cat("\nEstimated nadir point: ", round(object@nadir_point, 3))
cat("\nMutation Probability: ",
paste0(signif(100 * object@pmutation, 3), "%"))
cat("\nCrossover Probability: ",
paste0(signif(100 * object@pcrossover, 3), "%"))
if("ecr" %in% rownames(utils::installed.packages())){
if(!nullRP) cat("\nEstimated IGD: ", igd)
if(!nullRP) cat("\nEstimated GD: ", gd)
} else cat("\n\nPlease install package 'ecr' to calculate IGD and GD.")
if("emoa" %in% rownames(utils::installed.packages())) {
cat("\nEstimated HV: ", hv)
cat("\nRef point used for HV: ", reference_point)
} else cat("\n\nPlease install package 'emoa' to calculate hypervolume.")
cat("\n#====================================")
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.