Nothing
#' Centred logratio coefficients
#'
#' The centred logratio (clr) coefficients map D-part compositional data from the simplex
#' into a D-dimensional real space.
#'
#' Each composition is divided by the geometric mean of its parts before the
#' logarithm is taken.
#'
#' @param x multivariate data, ideally of class data.frame or matrix
#' @param base a positive or complex number:
#' the base with respect to which logarithms are computed. Defaults to \code{exp(1)}.
#' @return the resulting clr coefficients, including \item{x.clr}{clr coefficients}
#' \item{gm}{the geometric means of the original compositional data.}
#' @note The resulting data set is singular by definition.
#' @author Matthias Templ
#' @seealso \code{\link{cenLRinv}}, \code{\link{addLR}}, \code{\link{pivotCoord}},
#' \code{\link{addLRinv}}, \code{\link{pivotCoordInv}}
#' @references Aitchison, J. (1986) \emph{The Statistical Analysis of
#' Compositional Data} Monographs on Statistics and Applied Probability.
#' Chapman and Hall Ltd., London (UK). 416p.
#' @keywords manip
#' @export
#' @examples
#'
#' data(expenditures)
#' eclr <- cenLR(expenditures)
#' inveclr <- cenLRinv(eclr)
#' head(expenditures)
#' head(inveclr)
#' head(pivotCoordInv(eclr$x.clr))
#'
cenLR <- function(x, base = exp(1)){
#if(dim(x)[2] < 2) stop("data must be of dimension greater equal 2")
if(dim(x)[2] == 1){
res <- list(x.clr=x, gm=rep(1,dim(x)[1]))
} else{
geometricmean <- function (x) {
if (any(na.omit(x == 0)))
0
else exp(mean(log(unclass(x)[is.finite(x) & x > 0])))
}
gm <- apply(x, 1, geometricmean)
x.clr <- log(x/gm, base)
res <- list(x.clr=x.clr,
gm=gm
)
}
class(res) <- "clr"
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.