Nothing
## |
## | *Count data*
## |
## | This file is part of the R package rpact:
## | Confirmatory Adaptive Clinical Trial Design and Analysis
## |
## | Author: Gernot Wassmer, PhD, Tobias Muetze, PhD, and Friedrich Pahlke, PhD
## | Licensed under "GNU Lesser General Public License" version 3
## | License text can be found here: https://www.r-project.org/Licenses/LGPL-3
## |
## | RPACT company website: https://www.rpact.com
## | rpact package website: https://www.rpact.org
## |
## | Contact us for information about our services: info@rpact.com
## |
## | File version: $Revision: 8289 $
## | Last changed: $Date: 2024-09-30 13:29:37 +0200 (Mo, 30 Sep 2024) $
## | Last changed by: $Author: wassmer $
## |
.getVarianceEstimate <- function(lambda1,
lambda2,
allocation,
overdispersion,
accrualTime,
followUpTime,
fixedExposureTime,
recruit1,
recruit2) {
if (!is.na(fixedExposureTime)) {
varianceEstimate <- (1 + allocation) * (1 / fixedExposureTime *
(1 / lambda2 + 1 / (lambda1 * allocation)) +
overdispersion * (1 + 1 / allocation))
} else {
if (is.na(followUpTime)) {
stop(
C_EXCEPTION_TYPE_RUNTIME_ISSUE,
"Cannot calculated variance estimate because follow-up time is NA"
)
}
timeUnderObservation1 <-
pmax(accrualTime[length(accrualTime)] + followUpTime - recruit1, 0)
timeUnderObservation2 <-
pmax(accrualTime[length(accrualTime)] + followUpTime - recruit2, 0)
sumLambda1 <- sum(timeUnderObservation1 * lambda1 /
(1 + overdispersion * timeUnderObservation1 * lambda1))
sumLambda2 <- sum(timeUnderObservation2 * lambda2 /
(1 + overdispersion * timeUnderObservation2 * lambda2))
nTotal <- length(recruit1) + length(recruit2)
varianceEstimate <- nTotal * (1 / sumLambda1 + 1 / sumLambda2)
}
return(varianceEstimate)
}
.findThetaUniRoot <- function(boundary,
lambda2,
thetaH0,
directionUpper,
ar,
overdispersion,
accrualTime,
followUpTime,
fixedExposureTime,
numberOfSubjects,
recruit1,
recruit2) {
tryCatch(
{
if ((2 * directionUpper - 1) * boundary < 0) {
lowerBound <- optimize(
function(x) {
vHat <- .getVarianceEstimate(
lambda1 = x * lambda2,
lambda2 = lambda2,
allocation = ar,
overdispersion = overdispersion,
accrualTime = accrualTime,
followUpTime = followUpTime,
fixedExposureTime = fixedExposureTime,
recruit1 = recruit1[1:(ar * numberOfSubjects / (1 + ar))],
recruit2[1:(numberOfSubjects / (1 + ar))]
)
if (is.null(vHat) || length(vHat) == 0 || is.na(vHat) || is.nan(vHat)) {
stop(
C_EXCEPTION_TYPE_RUNTIME_ISSUE, "Cannot find theta. ",
"The calculated variance estimate is invalid: ", vHat
)
}
(log(x) - log(thetaH0)) / sqrt(vHat / numberOfSubjects)
},
lower = 1e-05,
upper = 1
)$minimum
} else {
lowerBound <- min(thetaH0, 1 / thetaH0)
}
if (is.na(lowerBound)) {
return(NA_real_)
}
effectRatio <- stats::uniroot(
function(x) {
vHat <- .getVarianceEstimate(
lambda1 = x * lambda2,
lambda2 = lambda2,
allocation = ar,
overdispersion = overdispersion,
accrualTime = accrualTime,
followUpTime = followUpTime,
fixedExposureTime = fixedExposureTime,
recruit1 = recruit1[1:(ar * numberOfSubjects / (1 + ar))],
recruit2 = recruit2[1:(numberOfSubjects / (1 + ar))]
)
if (is.null(vHat) || length(vHat) == 0 || is.na(vHat) || is.nan(vHat)) {
stop(
C_EXCEPTION_TYPE_RUNTIME_ISSUE, "Cannot find theta. ",
"The calculated variance estimate is invalid: ", vHat
)
}
(log(x) - log(thetaH0)) / sqrt(vHat / numberOfSubjects) -
(2 * directionUpper - 1) * boundary
},
lower = lowerBound,
upper = 10,
tol = .Machine$double.eps^0.5,
extendInt = "yes"
)$root
},
warning = function(w) {
effectRatio <<- NA_real_
},
error = function(e) {
effectRatio <<- NA_real_
}
)
return(effectRatio)
}
.getEffectScaleBoundaryDataCounts <- function(designPlan) {
design <- designPlan$.design
thetaH0 <- designPlan$thetaH0
lambda1 <- designPlan$lambda1
lambda2 <- designPlan$lambda2
overdispersion <- designPlan$overdispersion
fixedExposureTime <- designPlan$fixedExposureTime
followUpTime <- designPlan$followUpTime
studyTime <- designPlan$studyTime
accrualTime <- designPlan$accrualTime
accrualIntensity <- designPlan$accrualIntensity
maxNumberOfSubjects <- designPlan$maxNumberOfSubjects
numberOfSubjects <- designPlan$numberOfSubjects
allocationRatioPlanned <- designPlan$allocationRatioPlanned
directionUpper <- designPlan$directionUpper
if (is.na(followUpTime) && is.na(fixedExposureTime)) {
followUpTime <- studyTime - max(accrualTime)
}
if (designPlan$.objectType == "power") {
nParameters <- 1
} else {
nParameters <- length(lambda1)
}
criticalValuesEffectScaleUpper <- matrix(, nrow = design$kMax, ncol = nParameters)
criticalValuesEffectScaleLower <- matrix(, nrow = design$kMax, ncol = nParameters)
futilityBoundsEffectScaleUpper <- matrix(, nrow = design$kMax - 1, ncol = nParameters)
futilityBoundsEffectScaleLower <- matrix(, nrow = design$kMax - 1, ncol = nParameters)
if (length(allocationRatioPlanned) == 1) {
allocationRatioPlanned <- rep(allocationRatioPlanned, nParameters)
}
if (length(followUpTime) == 1) {
followUpTime <- rep(followUpTime, nParameters)
}
if (length(maxNumberOfSubjects) == 1) {
maxNumberOfSubjects <- rep(maxNumberOfSubjects, nParameters)
}
directionUpper[is.na(directionUpper)] <- C_DIRECTION_UPPER_DEFAULT
if (length(directionUpper) == 1) {
directionUpper <- rep(directionUpper, nParameters)
}
criticalValues <- .getCriticalValues(design)
futilityBounds <- design$futilityBounds
futilityBounds[!is.na(futilityBounds) & futilityBounds <= C_FUTILITY_BOUNDS_DEFAULT] <- NA_real_
for (iCase in 1:nParameters) {
ar <- allocationRatioPlanned[iCase]
# Build up general recruitment times
if (!any(is.na(accrualIntensity))) {
const <- ar / (1 + ar)
if (length(accrualIntensity) == 1) {
recruit1 <- seq(0, accrualTime[length(accrualIntensity)],
length.out = accrualTime[length(accrualIntensity)] * accrualIntensity[1] * const
)
recruit2 <- seq(0, accrualTime[length(accrualIntensity)],
length.out = accrualTime[length(accrualIntensity)] * accrualIntensity[1] * (1 - const)
)
} else {
recruit1 <- seq(0, accrualTime[1], length.out = accrualTime[1] * accrualIntensity[1] * const)
recruit2 <- seq(0, accrualTime[1], length.out = accrualTime[1] * accrualIntensity[1] * (1 - const))
for (i in 2:length(accrualIntensity)) {
recruit1 <- c(recruit1, seq(accrualTime[i - 1] + 1 / accrualIntensity[i], accrualTime[i],
length.out = (accrualTime[i] - accrualTime[i - 1]) * accrualIntensity[i] * const
))
recruit2 <- c(recruit2, seq(accrualTime[i - 1] + 1 / accrualIntensity[i], accrualTime[i],
length.out = (accrualTime[i] - accrualTime[i - 1]) * accrualIntensity[i] * (1 - const)
))
}
}
} else {
if (!any(is.na(accrualTime))) {
recruit1 <- seq(0, accrualTime, length.out = maxNumberOfSubjects[iCase] * ar / (1 + ar))
recruit2 <- seq(0, accrualTime, length.out = maxNumberOfSubjects[iCase] / (1 + ar))
}
}
# calculate theta that solves (ln(theta) - ln(thetaH0) sqrt(FisherInformation_k) = boundary
for (j in seq_len(length(criticalValues))) {
if (all(is.na(numberOfSubjects[, iCase]))) {
numberOfSubjectsPerStage <- maxNumberOfSubjects[iCase]
} else {
numberOfSubjectsPerStage <- numberOfSubjects[j, iCase]
}
criticalValuesEffectScaleUpper[j, iCase] <- .findThetaUniRoot(
criticalValues[j],
lambda2, thetaH0,
directionUpper[iCase],
ar, overdispersion, accrualTime,
followUpTime[iCase], fixedExposureTime,
numberOfSubjectsPerStage,
recruit1[1:(ar * numberOfSubjectsPerStage / (1 + ar))],
recruit2[1:(numberOfSubjectsPerStage / (1 + ar))]
)
if (design$sided == 2) {
criticalValuesEffectScaleLower[j, iCase] <- .findThetaUniRoot(
-criticalValues[j],
lambda2, thetaH0,
directionUpper[iCase],
ar, overdispersion, accrualTime,
followUpTime[iCase], fixedExposureTime,
numberOfSubjectsPerStage,
recruit1[1:(ar * numberOfSubjectsPerStage / (1 + ar))],
recruit2[1:(numberOfSubjectsPerStage / (1 + ar))]
)
}
}
if (!all(is.na(futilityBounds))) {
for (j in seq_len(length(futilityBounds))) {
if (all(is.na(numberOfSubjects[, iCase]))) {
numberOfSubjectsPerStage <- maxNumberOfSubjects[iCase]
} else {
numberOfSubjectsPerStage <- numberOfSubjects[j, iCase]
}
futilityBoundsEffectScaleUpper[j, iCase] <- .findThetaUniRoot(
futilityBounds[j],
lambda2, thetaH0,
directionUpper[iCase],
ar, overdispersion, accrualTime,
followUpTime[iCase], fixedExposureTime,
numberOfSubjectsPerStage,
recruit1[1:(ar * numberOfSubjectsPerStage / (1 + ar))],
recruit2[1:(numberOfSubjectsPerStage / (1 + ar))]
)
if (design$sided == 2 && design$kMax > 1 &&
(design$typeOfDesign == C_TYPE_OF_DESIGN_PT ||
!is.null(design$typeBetaSpending) && design$typeBetaSpending != "none")) {
futilityBoundsEffectScaleLower[j, iCase] <- .findThetaUniRoot(
-futilityBounds[j],
lambda2, thetaH0,
directionUpper[iCase],
ar, overdispersion, accrualTime,
followUpTime[iCase], fixedExposureTime,
numberOfSubjectsPerStage,
recruit1[1:(ar * numberOfSubjectsPerStage / (1 + ar))],
recruit2[1:(numberOfSubjectsPerStage / (1 + ar))]
)
}
}
}
}
criticalValuesEffectScaleUpper[!is.na(criticalValuesEffectScaleUpper) &
criticalValuesEffectScaleUpper <= 0] <- NA_real_
criticalValuesEffectScaleLower[!is.na(criticalValuesEffectScaleLower) &
criticalValuesEffectScaleLower <= 0] <- NA_real_
futilityBoundsEffectScaleUpper[!is.na(futilityBoundsEffectScaleUpper) &
futilityBoundsEffectScaleUpper <= 0] <- NA_real_
futilityBoundsEffectScaleLower[!is.na(futilityBoundsEffectScaleLower) &
futilityBoundsEffectScaleLower <= 0] <- NA_real_
return(list(
criticalValuesEffectScaleUpper = matrix(criticalValuesEffectScaleUpper, nrow = design$kMax),
criticalValuesEffectScaleLower = matrix(criticalValuesEffectScaleLower, nrow = design$kMax),
futilityBoundsEffectScaleUpper = matrix(futilityBoundsEffectScaleUpper, nrow = design$kMax - 1),
futilityBoundsEffectScaleLower = matrix(futilityBoundsEffectScaleLower, nrow = design$kMax - 1)
))
}
.getCalendarTime <- function(n1,
n2,
information,
shift,
accrualTime,
recruit1,
recruit2,
fixedExposureTime,
lambda1,
lambda2,
thetaH0,
overdispersion) {
if (any(is.na(recruit1))) {
recruit1 <- seq(0, accrualTime, length.out = n1)
}
if (any(is.na(recruit2))) {
recruit2 <- seq(0, accrualTime, length.out = n2)
}
tryCatch(
{
return(stats::uniroot(
function(x) {
if (!is.na(fixedExposureTime)) {
timeUnderObservation1 <-
pmax(pmin(x - recruit1, fixedExposureTime), 0)
timeUnderObservation2 <-
pmax(pmin(x - recruit2, fixedExposureTime), 0)
} else {
timeUnderObservation1 <- pmax(x - recruit1, 0)
timeUnderObservation2 <- pmax(x - recruit2, 0)
}
sumLambda1 <- sum(timeUnderObservation1 * lambda1 /
(1 + overdispersion * timeUnderObservation1 * lambda1))
sumLambda2 <- sum(timeUnderObservation2 * lambda2 /
(1 + overdispersion * timeUnderObservation2 * lambda2))
return(1 / (1 / sumLambda1 + 1 / sumLambda2) -
information * shift / log(lambda1 / lambda2 / thetaH0)^2)
},
interval = c(0, 10 * max(1, max(accrualTime))),
extendInt = "yes",
tol = 1e-07
)$root)
},
error = function(e) {
warning("Failed to calculate the calendar time. ",
"Fisher information might be bounded, e.g., due to overdispersion > 0",
call. = FALSE
)
}
)
return(NA_real_)
}
.getMaximumSampleSizeTwoGroups <- function(allocationRatioPlanned,
shift,
accrualTime,
followUpTime,
lambda1,
lambda2,
thetaH0,
overdispersion) {
n2 <- stats::uniroot(function(y) {
n2 <- y
n1 <- allocationRatioPlanned * n2
timeUnderObservation1 <-
pmax(accrualTime + followUpTime - seq(0, accrualTime, length.out = n1), 0)
timeUnderObservation2 <-
pmax(accrualTime + followUpTime - seq(0, accrualTime, length.out = n2), 0)
sumLambda1 <- sum(timeUnderObservation1 * lambda1 /
(1 + overdispersion * timeUnderObservation1 * lambda1))
sumLambda2 <- sum(timeUnderObservation2 * lambda2 /
(1 + overdispersion * timeUnderObservation2 * lambda2))
return(1 / (1 / sumLambda1 + 1 / sumLambda2) -
shift / log(lambda1 / lambda2 / thetaH0)^2)
}, interval = c(0, 10^4), extendInt = "yes", tol = 1e-02)$root
n1 <- ceiling(allocationRatioPlanned * n2)
n2 <- ceiling(n2)
# ensure that information is reached (necessary, gscounts does not check!)
timeUnderObservation1 <- pmax(accrualTime + followUpTime - seq(0, accrualTime, length.out = n1), 0)
timeUnderObservation2 <- pmax(accrualTime + followUpTime - seq(0, accrualTime, length.out = n2), 0)
sumLambda1 <- sum(timeUnderObservation1 * lambda1 / (1 + overdispersion * timeUnderObservation1 * lambda1))
sumLambda2 <- sum(timeUnderObservation2 * lambda2 / (1 + overdispersion * timeUnderObservation2 * lambda2))
if (1 / (1 / sumLambda1 + 1 / sumLambda2) < shift / log(lambda1 / lambda2 / thetaH0)^2) {
n2 <- n2 + 1
n1 <- n1 + 1
}
return(list(
n1 = n1,
n2 = n2
))
}
.getDesignPlanCountData <- function(design,
designCharacteristics,
objectType,
sided,
lambda1,
lambda2,
lambda,
theta,
thetaH0,
overdispersion,
fixedExposureTime,
accrualTime,
accrualIntensity,
followUpTime,
maxNumberOfSubjects,
allocationRatioPlanned) {
designPlan <- TrialDesignPlanCountData$new(
design = design,
designCharacteristics = designCharacteristics
)
designPlan$.setObjectType(objectType)
sampleSizeEnabled <- identical(objectType, "sampleSize")
if (sampleSizeEnabled || design$kMax == 1) {
designPlan$.setParameterType("overallReject", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("rejectPerStage", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("futilityPerStage", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("futilityStop", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("earlyStop", C_PARAM_NOT_APPLICABLE)
}
if (!sampleSizeEnabled) {
designPlan$.setParameterType("power", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("studyTime", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("numberOfSubjects", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("calendarTime", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("expectedStudyDurationH1", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("expectedNumberOfSubjectsH1", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("informationOverStages", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("maxInformation", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("expectedInformationH0", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("expectedInformationH01", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("expectedInformationH1", C_PARAM_NOT_APPLICABLE)
}
if (any(is.na(allocationRatioPlanned))) {
allocationRatioPlanned <- C_ALLOCATION_RATIO_DEFAULT
}
.assertIsValidAllocationRatioPlannedSampleSize(allocationRatioPlanned, maxNumberOfSubjects)
.assertIsValidEffectCountData(
sampleSizeEnabled = sampleSizeEnabled,
sided = sided,
lambda1 = lambda1,
lambda2 = lambda2,
lambda = lambda,
theta = theta,
thetaH0 = thetaH0,
overdispersion = overdispersion
)
if (design$sided == 2 && thetaH0 != 1) {
stop(
C_EXCEPTION_TYPE_ILLEGAL_ARGUMENT,
"two-sided case is implemented for superiority testing only (i.e., thetaH0 = 1)"
)
}
if (!is.na(lambda2) && !any(is.na(theta))) {
totalCases <- length(theta)
} else if (!any(is.na(lambda1))) {
totalCases <- length(lambda1)
} else {
totalCases <- 1
}
.setValueAndParameterType(designPlan, "lambda1", lambda1, NA_real_, notApplicableIfNA = TRUE)
.setValueAndParameterType(designPlan, "lambda2", lambda2, NA_real_, notApplicableIfNA = TRUE)
.setValueAndParameterType(designPlan, "lambda", lambda, NA_real_, notApplicableIfNA = TRUE)
.setValueAndParameterType(designPlan, "theta", theta, NA_real_, notApplicableIfNA = TRUE)
.setValueAndParameterType(designPlan, "thetaH0", thetaH0, 1, notApplicableIfNA = TRUE)
.setValueAndParameterType(designPlan, "overdispersion", overdispersion, 0)
.setValueAndParameterType(designPlan, "fixedExposureTime",
fixedExposureTime, NA_real_,
notApplicableIfNA = TRUE
)
.setValueAndParameterType(designPlan, "accrualTime",
accrualTime, NA_real_,
notApplicableIfNA = TRUE
)
.setValueAndParameterType(designPlan, "accrualIntensity",
accrualIntensity, NA_real_,
notApplicableIfNA = TRUE
)
.setValueAndParameterType(designPlan, "followUpTime",
followUpTime, NA_real_,
notApplicableIfNA = TRUE
)
.setValueAndParameterType(designPlan, "maxNumberOfSubjects",
as.integer(maxNumberOfSubjects), NA_integer_,
notApplicableIfNA = TRUE
)
.setValueAndParameterType(
designPlan, "allocationRatioPlanned",
allocationRatioPlanned, C_ALLOCATION_RATIO_DEFAULT
)
if (identical(designPlan$allocationRatioPlanned, 0)) {
designPlan$optimumAllocationRatio <- TRUE
designPlan$.setParameterType("optimumAllocationRatio", C_PARAM_USER_DEFINED)
}
if (!is.na(lambda2) && !any(is.na(theta))) {
lambda1 <- lambda2 * theta
designPlan$lambda1 <- lambda1
designPlan$.setParameterType("lambda1", C_PARAM_GENERATED)
} else if (!any(is.na(lambda1)) && !any(is.na(theta))) {
lambda2 <- lambda1 / theta
designPlan$lambda2 <- lambda2
designPlan$.setParameterType("lambda2", C_PARAM_GENERATED)
} else if (!is.na(lambda) && !any(is.na(theta))) {
designPlan$.setParameterType("lambda1", C_PARAM_GENERATED)
designPlan$.setParameterType("lambda2", C_PARAM_GENERATED)
}
if (length(accrualTime) == 2 && accrualTime[1] == 0) {
accrualTime <- accrualTime[-1]
designPlan$accrualTime <- accrualTime
}
.assertIsValidParametersCountData(
sampleSizeEnabled = sampleSizeEnabled,
simulationEnabled = FALSE,
fixedExposureTime = fixedExposureTime,
followUpTime = followUpTime,
accrualTime = accrualTime,
accrualIntensity = accrualIntensity,
maxNumberOfSubjects = maxNumberOfSubjects
)
designPlan$criticalValuesPValueScale <- matrix(design$stageLevels, ncol = 1)
if (design$sided == 2) {
designPlan$criticalValuesPValueScale <- designPlan$criticalValuesPValueScale * 2
}
designPlan$.setParameterType("criticalValuesPValueScale", C_PARAM_NOT_APPLICABLE)
if (.hasApplicableFutilityBounds(design)) {
designPlan$futilityBoundsPValueScale <-
matrix(1 - stats::pnorm(design$futilityBounds), ncol = 1)
designPlan$.setParameterType("futilityBoundsPValueScale", C_PARAM_GENERATED)
}
attr(designPlan, "totalCases") <- totalCases
return(designPlan)
}
#' @title
#' Get Sample Size Counts
#'
#' @description
#' Returns the sample size for testing the ratio of mean rates
#' of negative binomial distributed event numbers in two samples at given effect.
#'
#'
#' @inheritParams param_design_with_default
#' @inheritParams param_thetaH0
#' @inheritParams param_lambda_counts
#' @inheritParams param_lambda1_counts
#' @inheritParams param_lambda2_counts
#' @inheritParams param_theta_counts
#' @inheritParams param_fixedExposureTime_counts
#' @inheritParams param_accrualTime_counts
#' @inheritParams param_accrualIntensity_counts
#' @inheritParams param_followUpTime_counts
#' @inheritParams param_maxNumberOfSubjects
#' @inheritParams param_overdispersion_counts
#' @inheritParams param_allocationRatioPlanned_sampleSize
#' @inheritParams param_three_dots
#'
#' @details
#' At given design the function calculates the information, and stage-wise and maximum sample size for testing mean rates
#' of negative binomial distributed event numbers in two samples at given effect.
#' The sample size calculation is performed either for a fixed exposure time or a variable exposure time with fixed follow-up.
#' For the variable exposure time case, at given maximum sample size the necessary follow-up time is calculated.
#' The planned calendar time of interim stages is calculated if an accrual time is defined.
#' Additionally, an allocation ratio = \code{n1 / n2} can be specified where \code{n1} and \code{n2} are the number
#' of subjects in the two treatment groups. A null hypothesis value \code{thetaH0} can also be specified.
#'
#' @template return_object_trial_design_plan
#' @template how_to_get_help_for_generics
#'
#' @family sample size functions
#'
#' @template examples_get_sample_size_counts
#'
#' @export
#'
getSampleSizeCounts <- function(design = NULL, ...,
lambda1 = NA_real_,
lambda2 = NA_real_,
lambda = NA_real_,
theta = NA_real_,
thetaH0 = 1,
overdispersion = 0,
fixedExposureTime = NA_real_,
accrualTime = NA_real_,
accrualIntensity = NA_real_,
followUpTime = NA_real_,
maxNumberOfSubjects = NA_integer_,
allocationRatioPlanned = NA_real_) {
if (is.null(design)) {
design <- .getDefaultDesign(..., type = "sampleSize")
.warnInCaseOfUnknownArguments(
functionName = "getSampleSizeCounts",
ignore = .getDesignArgumentsToIgnoreAtUnknownArgumentCheck(design,
powerCalculationEnabled = FALSE
), ...
)
} else {
.assertIsTrialDesignGroupSequential(design)
.warnInCaseOfUnknownArguments(functionName = "getSampleSizeCounts", ...)
.warnInCaseOfTwoSidedPowerArgument(...)
.warnInCaseOfTwoSidedPowerIsDisabled(design)
}
kMax <- design$kMax
informationRates <- design$informationRates
alpha <- design$alpha
sided <- design$sided
beta <- design$beta
designCharacteristics <- getDesignCharacteristics(design)
shift <- designCharacteristics$shift
designPlan <- .getDesignPlanCountData(
design,
designCharacteristics,
objectType = "sampleSize",
sided,
lambda1,
lambda2,
lambda,
theta,
thetaH0,
overdispersion,
fixedExposureTime,
accrualTime,
accrualIntensity,
followUpTime,
maxNumberOfSubjects,
allocationRatioPlanned
)
totalCases <- attr(designPlan, "totalCases")
attr(designPlan, "totalCases") <- NULL
allocationRatioPlanned <- designPlan$allocationRatioPlanned
lambda1 <- designPlan$lambda1
lambda2 <- designPlan$lambda2
accrualTime <- designPlan$accrualTime
if (length(accrualTime) > 1) {
accrualTime <- accrualTime[-1]
}
if (design$kMax > 1) {
designPlan$rejectPerStage <- matrix(designCharacteristics$rejectionProbabilities, ncol = 1)
designPlan$.setParameterType("rejectPerStage", C_PARAM_GENERATED)
designPlan$futilityPerStage <- matrix(designCharacteristics$futilityProbabilities, ncol = 1)
designPlan$.setParameterType(
"futilityPerStage",
ifelse(!all(is.na(designPlan$futilityPerStage)) &&
any(designPlan$futilityPerStage > 1e-06, na.rm = TRUE),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
designPlan$futilityStop <- sum(designCharacteristics$futilityProbabilities)
designPlan$.setParameterType(
"futilityStop",
ifelse(!all(is.na(designPlan$futilityStop)) &&
any(designPlan$futilityStop > 1e-06, na.rm = TRUE),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
designPlan$earlyStop <- sum(c(
designCharacteristics$rejectionProbabilities[1:(design$kMax - 1)], designPlan$futilityStop
))
designPlan$.setParameterType("earlyStop", C_PARAM_GENERATED)
} else {
designPlan$.setParameterType("nFixed", C_PARAM_GENERATED)
}
calendarTime <- matrix(NA_real_, kMax, totalCases)
numberOfSubjects <- matrix(NA_real_, kMax, totalCases)
informationOverStages <- matrix(NA_real_, kMax, totalCases)
if (is.na(followUpTime)) {
studyTime <- rep(NA_real_, totalCases)
} else {
studyTime <- accrualTime + followUpTime
}
if (length(allocationRatioPlanned) == 1) {
allocationRatioPlanned <- rep(allocationRatioPlanned, totalCases)
}
n1 <- rep(NA_real_, totalCases)
n2 <- rep(NA_real_, totalCases)
expectedStudyDurationH1 <- rep(NA_real_, totalCases)
expectedNumberOfSubjectsH1 <- rep(NA_real_, totalCases)
for (iCase in 1:totalCases) {
if (!is.na(fixedExposureTime)) {
if (allocationRatioPlanned[iCase] == 0) {
designPlan$.setParameterType("allocationRatioPlanned", C_PARAM_GENERATED)
# find optimum allocation ratio
allocationRatioPlanned[iCase] <-
stats::optimize(function(x) {
if (!is.na(lambda) && !any(is.na(theta))) {
lambda2 <- (1 + x) * lambda / (1 + x * theta[iCase])
lambda1[iCase] <- lambda2 * theta[iCase]
}
varianceEstimate <- 1 / fixedExposureTime *
(1 / lambda2 + 1 / (lambda1[iCase] * x)) +
overdispersion * (1 + 1 / x)
n2[iCase] <- (qnorm(1 - alpha / sided) + qnorm(1 - beta))^2 *
varianceEstimate / log(lambda1[iCase] / lambda2 / thetaH0)^2
return(x * n2[iCase] + n2[iCase])
}, interval = c(0, 5), tol = 1e-05)$minimum
}
if (!is.na(lambda) && !any(is.na(theta))) {
lambda2 <- (1 + allocationRatioPlanned[iCase]) * lambda /
(1 + allocationRatioPlanned[iCase] * theta[iCase])
lambda1[iCase] <- lambda2 * theta[iCase]
}
# method 2 of Zhu & Lakkis (2013), coincides with Friede & Schmidli (2010)
varianceEstimate <- 1 / fixedExposureTime *
(1 / lambda2 + 1 / (lambda1[iCase] * allocationRatioPlanned[iCase])) +
overdispersion * (1 + 1 / allocationRatioPlanned[iCase])
n2[iCase] <- designCharacteristics$inflationFactor *
(qnorm(1 - alpha / sided) + qnorm(1 - beta))^2 * varianceEstimate /
log(lambda1[iCase] / lambda2 / thetaH0)^2
n1[iCase] <- allocationRatioPlanned[iCase] * n2[iCase]
n2[iCase] <- ceiling(n2[iCase])
n1[iCase] <- ceiling(n1[iCase])
if (!any(is.na(accrualTime))) {
recruit1 <- seq(0, accrualTime, length.out = n1[iCase])
recruit2 <- seq(0, accrualTime, length.out = n2[iCase])
if (kMax > 1) {
for (k in 1:(kMax - 1)) {
calendarTime[k, iCase] <- .getCalendarTime(
n1[iCase], n2[iCase], informationRates[k], shift,
accrualTime, NA_real_, NA_real_, fixedExposureTime,
lambda1[iCase], lambda2, thetaH0, overdispersion
)
}
}
calendarTime[kMax, iCase] <- accrualTime + fixedExposureTime
}
studyTime[iCase] <- calendarTime[kMax, iCase]
} else if (!is.na(maxNumberOfSubjects) || !any(is.na(accrualIntensity))) {
if (!is.na(lambda) && !any(is.na(theta))) {
lambda2 <- (1 + allocationRatioPlanned[iCase]) * lambda /
(1 + allocationRatioPlanned[iCase] * theta[iCase])
lambda1[iCase] <- lambda2 * theta[iCase]
}
if (!any(is.na(accrualIntensity))) {
const <- allocationRatioPlanned[iCase] / (1 + allocationRatioPlanned[iCase])
if (length(accrualIntensity) == 1) {
recruit1 <- seq(0, accrualTime[length(accrualIntensity)],
length.out = accrualTime[length(accrualIntensity)] * accrualIntensity[1] * const
)
recruit2 <- seq(0, accrualTime[length(accrualIntensity)],
length.out = accrualTime[length(accrualIntensity)] * accrualIntensity[1] * (1 - const)
)
} else {
recruit1 <- seq(0, accrualTime[1], length.out = accrualTime[1] * accrualIntensity[1] * const)
recruit2 <- seq(0, accrualTime[1], length.out = accrualTime[1] * accrualIntensity[1] * (1 - const))
for (i in 2:length(accrualIntensity)) {
recruit1 <- c(recruit1, seq(accrualTime[i - 1] + 1 / accrualIntensity[i],
accrualTime[i],
length.out = (accrualTime[i] - accrualTime[i - 1]) * accrualIntensity[i] * const
))
recruit2 <- c(recruit2, seq(accrualTime[i - 1] + 1 / accrualIntensity[i],
accrualTime[i],
length.out = (accrualTime[i] - accrualTime[i - 1]) * accrualIntensity[i] * (1 - const)
))
}
}
n1[iCase] <- length(recruit1)
n2[iCase] <- length(recruit2)
studyTime[iCase] <- .getCalendarTime(
n1[iCase], n2[iCase], informationRates[kMax], shift,
accrualTime, recruit1, recruit2, NA_real_,
lambda1[iCase], lambda2, thetaH0, overdispersion
)
if (kMax > 1) {
for (k in 1:(kMax - 1)) {
calendarTime[k, iCase] <- .getCalendarTime(
n1[iCase], n2[iCase], informationRates[k], shift,
accrualTime, recruit1, recruit2, NA_real_,
lambda1[iCase], lambda2, thetaH0, overdispersion
)
}
}
} else {
n2[iCase] <- ceiling(maxNumberOfSubjects / (1 + allocationRatioPlanned[iCase]))
n1[iCase] <- ceiling(allocationRatioPlanned[iCase] * n2[iCase])
recruit1 <- seq(0, accrualTime, length.out = n1[iCase])
recruit2 <- seq(0, accrualTime, length.out = n2[iCase])
studyTime[iCase] <- .getCalendarTime(
n1[iCase], n2[iCase], informationRates[kMax], shift,
accrualTime, NA_real_, NA_real_, NA_real_,
lambda1[iCase], lambda2, thetaH0, overdispersion
)
if (kMax > 1) {
for (k in 1:(kMax - 1)) {
calendarTime[k, iCase] <- .getCalendarTime(
n1[iCase], n2[iCase], informationRates[k], shift,
accrualTime, NA_real_, NA_real_, NA_real_,
lambda1[iCase], lambda2, thetaH0, overdispersion
)
}
}
}
calendarTime[kMax, iCase] <- studyTime[iCase]
} else {
if (allocationRatioPlanned[iCase] == 0) {
designPlan$.setParameterType("allocationRatioPlanned", C_PARAM_GENERATED)
allocationRatioPlanned[iCase] <- stats::optimize(function(x) {
if (!is.na(lambda) && !any(is.na(theta))) {
lambda2 <- (1 + x) * lambda / (1 + x * theta[iCase])
lambda1[iCase] <- lambda2 * theta[iCase]
}
n2[iCase] <- .getMaximumSampleSizeTwoGroups(
x, shift, accrualTime, followUpTime,
lambda1[iCase], lambda2, thetaH0, overdispersion
)$n2
return(x * n2[iCase] + n2[iCase])
}, interval = c(0, 5), tol = 1e-05)$minimum
}
if (!(is.na(lambda)) && !any(is.na(theta))) {
lambda2 <- (1 + allocationRatioPlanned[iCase]) * lambda /
(1 + allocationRatioPlanned[iCase] * theta[iCase])
lambda1[iCase] <- lambda2 * theta[iCase]
}
sampleSizes <- .getMaximumSampleSizeTwoGroups(
allocationRatioPlanned[iCase], shift, accrualTime, followUpTime,
lambda1[iCase], lambda2, thetaH0, overdispersion
)
n1[iCase] <- sampleSizes$n1
n2[iCase] <- sampleSizes$n2
if (!any(is.na(accrualTime))) {
recruit1 <- seq(0, accrualTime, length.out = n1[iCase])
recruit2 <- seq(0, accrualTime, length.out = n2[iCase])
}
if (kMax > 1) {
for (k in 1:(kMax - 1)) {
calendarTime[k, iCase] <- .getCalendarTime(
n1[iCase], n2[iCase], informationRates[k], shift,
accrualTime, NA_real_, NA_real_, NA_real_,
lambda1[iCase], lambda2, thetaH0, overdispersion
)
}
}
calendarTime[kMax, iCase] <- accrualTime + followUpTime
}
if (!any(is.na(calendarTime[, iCase]))) {
expectedStudyDurationH1[iCase] <- calendarTime[kMax, iCase]
if (kMax > 1) {
expectedStudyDurationH1[iCase] <- calendarTime[kMax, iCase] -
sum((designCharacteristics$rejectionProbabilities[1:(kMax - 1)] +
designCharacteristics$futilityProbabilities[1:(kMax - 1)]) *
(calendarTime[kMax, iCase] - calendarTime[1:(kMax - 1), iCase]))
}
for (k in 1:kMax) {
numberOfSubjects[k, iCase] <- length(recruit1[recruit1 <= calendarTime[k, iCase]]) +
length(recruit2[recruit2 <= calendarTime[k, iCase]])
}
expectedNumberOfSubjectsH1[iCase] <- numberOfSubjects[kMax, iCase]
if (kMax > 1) {
expectedNumberOfSubjectsH1[iCase] <- expectedNumberOfSubjectsH1[iCase] -
sum((designCharacteristics$rejectionProbabilities[1:(kMax - 1)] +
designCharacteristics$futilityProbabilities[1:(kMax - 1)]) *
(numberOfSubjects[kMax, iCase] - numberOfSubjects[1:(kMax - 1), iCase]))
}
}
informationOverStages[, iCase] <-
designCharacteristics$shift / log(lambda1[iCase] / lambda2 / thetaH0)^2 *
informationRates
}
if (length(unique(allocationRatioPlanned)) == 1) {
allocationRatioPlanned <- allocationRatioPlanned[1]
}
designPlan$lambda1 <- lambda1
designPlan$lambda2 <- lambda2
designPlan$allocationRatioPlanned <- allocationRatioPlanned
designPlan$directionUpper <- (lambda1 / lambda2 > thetaH0)
designPlan$.setParameterType("directionUpper", C_PARAM_GENERATED)
designPlan$calendarTime <- calendarTime
designPlan$.setParameterType(
"calendarTime",
ifelse(!all(is.na(calendarTime)), C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE)
)
designPlan$studyTime <- studyTime
designPlan$.setParameterType(
"studyTime",
ifelse(all(is.na(calendarTime)) && !all(is.na(studyTime)),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
designPlan$numberOfSubjects <- numberOfSubjects
designPlan$.setParameterType(
"numberOfSubjects",
ifelse((kMax > 1) && !all(is.na(calendarTime)) && !all(is.na(accrualTime)),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
designPlan$expectedStudyDurationH1 <- expectedStudyDurationH1
designPlan$.setParameterType(
"expectedStudyDurationH1",
ifelse(!all(is.na(calendarTime)),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
designPlan$expectedNumberOfSubjectsH1 <- expectedNumberOfSubjectsH1
designPlan$.setParameterType(
"expectedNumberOfSubjectsH1",
ifelse(!all(is.na(calendarTime)),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
if (!is.na(maxNumberOfSubjects)) {
designPlan$.setParameterType("maxNumberOfSubjects", C_PARAM_USER_DEFINED)
} else {
designPlan$maxNumberOfSubjects <- n1 + n2
designPlan$.setParameterType("maxNumberOfSubjects", C_PARAM_GENERATED)
}
designPlan$maxNumberOfSubjects1 <- n1
designPlan$.setParameterType("maxNumberOfSubjects1", C_PARAM_GENERATED)
designPlan$maxNumberOfSubjects2 <- n2
designPlan$.setParameterType("maxNumberOfSubjects2", C_PARAM_GENERATED)
if (design$kMax > 1) {
designPlan$informationOverStages <- informationOverStages
designPlan$.setParameterType("informationOverStages", C_PARAM_GENERATED)
designPlan$maxInformation <- designCharacteristics$shift / log(lambda1 / lambda2 / thetaH0)^2
designPlan$.setParameterType("maxInformation", C_PARAM_GENERATED)
designPlan$expectedInformationH0 <- designCharacteristics$averageSampleNumber0 *
designCharacteristics$nFixed / log(lambda1 / lambda2 / thetaH0)^2
designPlan$.setParameterType(
"expectedInformationH0",
ifelse(!all(is.na(designPlan$expectedInformationH0)),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
designPlan$expectedInformationH01 <- designCharacteristics$averageSampleNumber01 *
designCharacteristics$nFixed / log(lambda1 / lambda2 / thetaH0)^2
designPlan$.setParameterType(
"expectedInformationH01",
ifelse(!all(is.na(designPlan$expectedInformationH01)),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
designPlan$expectedInformationH1 <- designCharacteristics$averageSampleNumber1 *
designCharacteristics$nFixed / log(lambda1 / lambda2 / thetaH0)^2
designPlan$.setParameterType(
"expectedInformationH1",
ifelse(!all(is.na(designPlan$expectedInformationH1)),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
designPlan$.setParameterType("nFixed1", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("nFixed2", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("nFixed", C_PARAM_NOT_APPLICABLE)
} else {
designPlan$nFixed <- n1 + n2
designPlan$nFixed1 <- n1
designPlan$.setParameterType("nFixed1", C_PARAM_GENERATED)
designPlan$nFixed2 <- n2
designPlan$.setParameterType("nFixed2", C_PARAM_GENERATED)
designPlan$maxNumberOfSubjects1 <- n1
designPlan$.setParameterType("maxNumberOfSubjects1", C_PARAM_NOT_APPLICABLE)
designPlan$maxNumberOfSubjects2 <- n2
designPlan$.setParameterType("maxNumberOfSubjects2", C_PARAM_NOT_APPLICABLE)
designPlan$maxInformation <- designCharacteristics$nFixed / log(lambda1 / lambda2 / thetaH0)^2
designPlan$.setParameterType("maxInformation", C_PARAM_GENERATED)
designPlan$.setParameterType("informationOverStages", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("expectedInformationH0", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("expectedInformationH01", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("expectedInformationH1", C_PARAM_NOT_APPLICABLE)
}
if (all(is.na(theta))) {
designPlan$theta <- lambda1 / lambda2
designPlan$.setParameterType("theta", C_PARAM_GENERATED)
}
.addEffectScaleBoundaryDataToDesignPlan(designPlan)
return(designPlan)
}
#' @title
#' Get Power Counts
#'
#' @description
#' Returns the power, stopping probabilities, and expected sample size for testing mean rates
#' for negative binomial distributed event numbers in two samples at given sample sizes.
#'
#' @inheritParams param_design_with_default
#' @inheritParams param_thetaH0
#' @inheritParams param_lambda_counts
#' @inheritParams param_lambda1_counts
#' @inheritParams param_lambda2_counts
#' @inheritParams param_theta_counts
#' @inheritParams param_fixedExposureTime_counts
#' @inheritParams param_accrualTime_counts
#' @inheritParams param_accrualIntensity_counts
#' @inheritParams param_followUpTime_counts
#' @inheritParams param_maxNumberOfSubjects
#' @inheritParams param_overdispersion_counts
#' @inheritParams param_directionUpper
#' @inheritParams param_maxNumberOfSubjects
#' @inheritParams param_allocationRatioPlanned
#' @inheritParams param_three_dots
#'
#' @details
#' At given design the function calculates the power, stopping probabilities, and expected sample size
#' for testing the ratio of two mean rates of negative binomial distributed event numbers in two samples
#' at given maximum sample size and effect.
#' The power calculation is performed either for a fixed exposure time or a variable exposure time with fixed follow-up
#' where the information over the stages is calculated according to the specified information rate in the design.
#' Additionally, an allocation ratio = \code{n1 / n2} can be specified where \code{n1} and \code{n2} are the number
#' of subjects in the two treatment groups. A null hypothesis value \code{thetaH0} can also be specified.
#'
#' @template return_object_trial_design_plan
#' @template how_to_get_help_for_generics
#'
#' @family power functions
#'
#' @template examples_get_power_counts
#'
#' @export
#'
getPowerCounts <- function(design = NULL, ...,
directionUpper = NA,
maxNumberOfSubjects = NA_real_,
lambda1 = NA_real_,
lambda2 = NA_real_,
lambda = NA_real_,
theta = NA_real_,
thetaH0 = 1,
overdispersion = 0,
fixedExposureTime = NA_real_,
accrualTime = NA_real_,
accrualIntensity = NA_real_,
followUpTime = NA_real_,
allocationRatioPlanned = NA_real_) {
if (is.null(design)) {
design <- .getDefaultDesign(..., type = "power")
.warnInCaseOfUnknownArguments(
functionName = "getPowerCounts",
ignore = .getDesignArgumentsToIgnoreAtUnknownArgumentCheck(
design,
powerCalculationEnabled = TRUE
), ...
)
} else {
.assertIsTrialDesignGroupSequential(design)
.warnInCaseOfUnknownArguments(functionName = "getPowerCounts", ...)
.warnInCaseOfTwoSidedPowerArgument(...)
.warnInCaseOfTwoSidedPowerIsDisabled(design)
}
kMax <- design$kMax
informationRates <- design$informationRates
alpha <- design$alpha
sided <- design$sided
designCharacteristics <- getDesignCharacteristics(design)
shift <- designCharacteristics$shift
designPlan <- .getDesignPlanCountData(
design,
designCharacteristics,
objectType = "power",
sided,
lambda1,
lambda2,
lambda,
theta,
thetaH0,
overdispersion,
fixedExposureTime,
accrualTime,
accrualIntensity,
followUpTime,
maxNumberOfSubjects,
allocationRatioPlanned
)
totalCases <- attr(designPlan, "totalCases")
attr(designPlan, "totalCases") <- NULL
allocationRatioPlanned <- designPlan$allocationRatioPlanned
lambda1 <- designPlan$lambda1
lambda2 <- designPlan$lambda2
accrualTime <- designPlan$accrualTime
if (length(accrualTime) > 1) {
accrualTime <- accrualTime[-1]
}
directionUpper <- .assertIsValidDirectionUpper(directionUpper,
design,
objectType = "power", userFunctionCallEnabled = TRUE
)
.setValueAndParameterType(designPlan, "directionUpper", directionUpper, C_DIRECTION_UPPER_DEFAULT)
futilityPerStage <- matrix(NA_real_, kMax - 1, totalCases)
rejectPerStage <- matrix(NA_real_, kMax, totalCases)
earlyStop <- rep(NA_real_, totalCases)
overallReject <- rep(NA_real_, totalCases)
if (!any(is.na(accrualIntensity))) {
const <- allocationRatioPlanned / (1 + allocationRatioPlanned)
if (length(accrualIntensity) == 1) {
recruit1 <- seq(0, accrualTime[length(accrualIntensity)],
length.out = accrualTime[length(accrualIntensity)] * accrualIntensity[1] * const
)
recruit2 <- seq(0, accrualTime[length(accrualIntensity)],
length.out = accrualTime[length(accrualIntensity)] * accrualIntensity[1] * (1 - const)
)
} else {
recruit1 <- seq(0, accrualTime[1], length.out = accrualTime[1] * accrualIntensity[1] * const)
recruit2 <- seq(0, accrualTime[1], length.out = accrualTime[1] * accrualIntensity[1] * (1 - const))
for (i in 2:length(accrualIntensity)) {
recruit1 <- c(recruit1, seq(accrualTime[i - 1] + 1 / accrualIntensity[i],
accrualTime[i],
length.out = (accrualTime[i] - accrualTime[i - 1]) * accrualIntensity[i] * const
))
recruit2 <- c(recruit2, seq(accrualTime[i - 1] + 1 / accrualIntensity[i],
accrualTime[i],
length.out = (accrualTime[i] - accrualTime[i - 1]) * accrualIntensity[i] * (1 - const)
))
}
}
n1 <- length(recruit1)
n2 <- length(recruit2)
nTotal <- n1 + n2
} else {
n2 <- maxNumberOfSubjects / (1 + allocationRatioPlanned)
n1 <- allocationRatioPlanned * n2
nTotal <- n1 + n2
if (!any(is.na(accrualTime))) {
recruit1 <- seq(0, accrualTime, length.out = n1)
recruit2 <- seq(0, accrualTime, length.out = n2)
}
}
for (iCase in 1:totalCases) {
if (!is.na(lambda) && !any(is.na(theta))) {
lambda2 <- (1 + allocationRatioPlanned) * lambda / (1 + allocationRatioPlanned * theta[iCase])
lambda1[iCase] <- lambda2 * theta[iCase]
}
if (!is.na(fixedExposureTime)) {
varianceEstimate <- (1 + allocationRatioPlanned) * (1 / fixedExposureTime *
(1 / lambda2 + 1 / (lambda1[iCase] * allocationRatioPlanned)) +
overdispersion * (1 + 1 / allocationRatioPlanned))
} else {
timeUnderObservation1 <-
pmax(accrualTime[length(accrualTime)] + followUpTime - recruit1, 0)
timeUnderObservation2 <-
pmax(accrualTime[length(accrualTime)] + followUpTime - recruit2, 0)
sumLambda1 <- sum(timeUnderObservation1 * lambda1[iCase] /
(1 + overdispersion * timeUnderObservation1 * lambda1[iCase]))
sumLambda2 <- sum(timeUnderObservation2 * lambda2 /
(1 + overdispersion * timeUnderObservation2 * lambda2))
varianceEstimate <- nTotal * (1 / sumLambda1 + 1 / sumLambda2)
}
oneSidedFactor <- ifelse(sided == 1, 2 * directionUpper - 1, 1)
powerAndAverageSampleNumber <- getPowerAndAverageSampleNumber(
design = design,
theta = oneSidedFactor * log(lambda1[iCase] / lambda2 / thetaH0) /
sqrt(varianceEstimate),
nMax = nTotal
)
futilityPerStage[, iCase] <- powerAndAverageSampleNumber$futilityPerStage
rejectPerStage[, iCase] <- powerAndAverageSampleNumber$rejectPerStage
overallReject[iCase] <- powerAndAverageSampleNumber$overallReject
earlyStop[iCase] <- sum(powerAndAverageSampleNumber$earlyStop[1:(design$kMax - 1), ], na.rm = TRUE)
}
designPlan$maxNumberOfSubjects <- n1 + n2
designPlan$.setParameterType(
"maxNumberOfSubjects",
ifelse(any(is.na(accrualIntensity)), C_PARAM_USER_DEFINED, C_PARAM_GENERATED)
)
designPlan$maxNumberOfSubjects1 <- n1
designPlan$.setParameterType(
"maxNumberOfSubjects1",
ifelse(allocationRatioPlanned == 1, C_PARAM_NOT_APPLICABLE, C_PARAM_GENERATED)
)
designPlan$maxNumberOfSubjects2 <- n2
designPlan$.setParameterType(
"maxNumberOfSubjects2",
ifelse(allocationRatioPlanned == 1, C_PARAM_NOT_APPLICABLE, C_PARAM_GENERATED)
)
if (design$kMax > 1) {
designPlan$futilityPerStage <- futilityPerStage
designPlan$.setParameterType(
"futilityPerStage",
ifelse(!all(is.na(futilityPerStage)) && any(futilityPerStage > 1e-06, na.rm = TRUE),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
designPlan$futilityStop <- base::colSums(futilityPerStage, na.rm = TRUE)
designPlan$.setParameterType(
"futilityStop",
ifelse(!all(is.na(designPlan$futilityStop)) &&
any(designPlan$futilityStop > 1e-06, na.rm = TRUE),
C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE
)
)
designPlan$rejectPerStage <- rejectPerStage
designPlan$.setParameterType("rejectPerStage", C_PARAM_GENERATED)
designPlan$earlyStop <- earlyStop
designPlan$.setParameterType(
"earlyStop", ifelse(!all(is.na(earlyStop)), C_PARAM_GENERATED, C_PARAM_NOT_APPLICABLE)
)
designPlan$.setParameterType("nFixed1", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("nFixed2", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("nFixed", C_PARAM_NOT_APPLICABLE)
} else {
designPlan$nFixed <- n1 + n2
designPlan$.setParameterType(
"nFixed",
ifelse(any(is.na(accrualIntensity)), C_PARAM_NOT_APPLICABLE, C_PARAM_GENERATED)
)
designPlan$nFixed1 <- n1
designPlan$.setParameterType(
"nFixed1",
ifelse(allocationRatioPlanned == 1, C_PARAM_NOT_APPLICABLE, C_PARAM_GENERATED)
)
designPlan$nFixed2 <- n2
designPlan$.setParameterType(
"nFixed2",
ifelse(allocationRatioPlanned == 1, C_PARAM_NOT_APPLICABLE, C_PARAM_GENERATED)
)
designPlan$.setParameterType("maxNumberOfSubjects1", C_PARAM_NOT_APPLICABLE)
designPlan$.setParameterType("maxNumberOfSubjects2", C_PARAM_NOT_APPLICABLE)
if (is.na(designPlan$maxNumberOfSubjects)) {
designPlan$maxNumberOfSubjects <- designPlan$nFixed
}
}
designPlan$overallReject <- overallReject
designPlan$.setParameterType("overallReject", C_PARAM_GENERATED)
if (all(is.na(theta))) {
designPlan$theta <- lambda1 / lambda2
designPlan$.setParameterType("theta", C_PARAM_GENERATED)
}
.addEffectScaleBoundaryDataToDesignPlan(designPlan)
return(designPlan)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.