Nothing
setMethod("getQuan", "PcaCov", function(obj) obj@n.obs)
## The S3 version
PcaCov <- function (x, ...)
UseMethod("PcaCov")
PcaCov.formula <- function (formula, data = NULL, subset, na.action, ...)
{
cl <- match.call()
mt <- terms(formula, data = data)
if (attr(mt, "response") > 0)
stop("response not allowed in formula")
mf <- match.call(expand.dots = FALSE)
mf$... <- NULL
mf[[1]] <- as.name("model.frame")
mf <- eval.parent(mf)
## this is not a 'standard' model-fitting function,
## so no need to consider contrasts or levels
if (.check_vars_numeric(mf))
stop("PCA applies only to numerical variables")
na.act <- attr(mf, "na.action")
mt <- attr(mf, "terms")
attr(mt, "intercept") <- 0
x <- model.matrix(mt, mf)
res <- PcaCov.default(x, ...)
## fix up call to refer to the generic, but leave arg name as `formula'
cl[[1]] <- as.name("PcaCov")
res@call <- cl
# if (!is.null(na.act)) {
# res$na.action <- na.act
# if (!is.null(sc <- res$x))
# res$x <- napredict(na.act, sc)
# }
res
}
PcaCov.default <- function(x, k=ncol(x), kmax=ncol(x), cov.control = CovControlMcd(),
scale=FALSE, signflip=TRUE, crit.pca.distances=0.975,
trace=FALSE, ...)
{
cl <- match.call()
if(missing(x)){
stop("You have to provide at least some data")
}
data <- as.matrix(x)
n <- nrow(data)
p <- ncol(data)
if(n < p)
stop("'PcaCov' can only be used with more units than variables")
## verify and set the input parameters: k and kmax
myrank <- rankMM(x)
kmax <- max(min(floor(kmax), myrank),1)
if((k <- floor(k)) < 0)
k <- 0
else if(k > kmax) {
warning(paste("The number of principal components k = ", k, " is larger then kmax = ", kmax, "; k is set to ", kmax,".", sep=""))
k <- kmax
}
######################################################################
##
## VT::05.08.2016
## If scale is TRUE/FALSE, this will be handled by .xpc()
## otherwise call the undocumented function doScale() from robustbase -
## it will behave properly and scale can be a vector or a function
if(is.null(scale))
scale <- vector('numeric', p) + 1
else if(!is.logical(scale))
{
data <- doScale(data, center=NULL, scale=scale)
scale <- data$scale
data=data$x
}
## VT::30.09.2009 - add the option for classic covariance estimates - if cov.control = NULL
covx <- if(!is.null(cov.control)) restimate(cov.control, data) else Cov(data)
covmat <- list(cov=getCov(covx), center=getCenter(covx), n.obs=covx@n.obs)
## VT::05.06.2016 - the call to princomp() replaced by an internal function
## it will handle the case scale=TRUE and will return also the proper scores
out <- .xpc(x, covmat=covmat, scale=scale, signflip=signflip)
## VT::11.28.2015: Choose the number of components k (if not specified)
## (see mail of Klaus Nordhausen from 19.11.2015: the help says that the algorithm defines k)
## before it was just k <- min(kmax, p), i.e. k=rank(X)
if(k != 0)
k <- min(k, p)
else
{
# k <- min(kmax, p)
##
## Find the number of PC 'k'
## Use the test l_k/l_1 >= 10.E-3, i.e. the ratio of
## the k-th eigenvalue to the first eigenvalue (sorted decreasingly) is larger than
## 10.E/3 and the fraction of the cumulative dispersion is larger or equal 80%
##
rk <- min(n, p)
ev <- out$sdev^2
test <- which(ev/ev[1] <= 1.E-3)
k <- if(length(test) != 0) min(min(rk, test[1]), kmax)
else min(rk, kmax)
cumulative <- cumsum(ev[1:k])/sum(ev)
if(cumulative[k] > 0.8) {
k <- which(cumulative >= 0.8)[1]
}
if(trace)
cat("\n k, kmax, rank, p: ", k, kmax, rk, p, "\n")
if(trace)
cat("The number of principal components is defined by the algorithm. It is set to ", k,".\n", sep="")
}
center <- getCenter(covx)
scale <- out$scale
sdev <- out$sdev
loadings <- out$loadings[, 1:k, drop=FALSE]
eigenvalues <- (sdev^2)[1:k]
scores <- out$scores[, 1:k, drop=FALSE]
eig0 <- sdev^2
totvar0 <- sum(eig0)
######################################################################
names(eigenvalues) <- NULL
if(is.list(dimnames(x)))
{
rownames(scores) <- rownames(x) # dimnames(scores)[[1]] <- dimnames(data)[[1]]
}else
dimnames(scores)[[1]] <- 1:n
dimnames(scores)[[2]] <- paste("PC", seq_len(ncol(scores)), sep = "")
dimnames(loadings) <- list(colnames(data), paste("PC", seq_len(ncol(loadings)), sep = ""))
## fix up call to refer to the generic, but leave arg name as 'formula'
cl[[1]] <- as.name("PcaCov")
res <- new("PcaCov", call=cl,
rank=myrank,
loadings=loadings,
eigenvalues=eigenvalues,
center=center,
scale=scale,
scores=scores,
k=k,
n.obs=n,
eig0=eig0,
totvar0=totvar0)
## Compute distances and flags
res <- pca.distances(res, x, p, crit.pca.distances)
return(res)
}
## A simplified version of princomp()
.xpc <- function (x, covmat, scale=FALSE, signflip=FALSE)
{
## x is always available and covmat is always a list
## scores is always TRUE (therefore we need x)
##
if (any(is.na(match(c("cov", "n.obs"), names(covmat)))))
stop("'covmat' is not a valid covariance list")
cv <- covmat$cov
n.obs <- covmat$n.obs
cen <- covmat$center
if(!is.numeric(cv))
stop("PCA applies only to numerical variables")
cor <- FALSE
if(is.logical(scale))
{
if(scale)
{
cor <- TRUE
sds <- sqrt(diag(cv))
if(any(sds == 0))
stop("cannot use 'cor = TRUE' with a constant variable")
cv <- cv/(sds %o% sds)
}
}
edc <- eigen(cv, symmetric = TRUE)
ev <- edc$values
if(any(neg <- ev < 0))
{
if(any(ev[neg] < -9 * .Machine$double.eps * ev[1L]))
stop("covariance matrix is not non-negative definite")
else
ev[neg] <- 0
}
if(signflip)
edc$vectors <- .signflip(edc$vectors)
cn <- paste0("PC", 1L:ncol(cv))
names(ev) <- cn
dimnames(edc$vectors) <- list(dimnames(x)[[2L]], cn)
sdev <- sqrt(ev)
sc <- setNames(if(cor) sds
else if(!is.logical(scale)) scale
else rep.int(1, ncol(cv)), colnames(cv))
scr <- as.matrix(doScale(x, center=cen, scale=sc)$x) %*% edc$vectors
dimnames(scr) <- list(dimnames(x)[[1L]], cn)
edc <- list(sdev=sdev, loadings=structure(edc$vectors, class="loadings"),
center=cen, scale=sc, n.obs=n.obs, scores=scr)
class(edc) <- "princomp"
edc
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.