R/discAreas.R

Defines functions rtopDisc.SpatialPolygons rtopDisc.SpatialPolygonsDataFrame rtopDisc.sf rtopDisc.rtop rtopDisc.rtopVariogram discBinAreas

Documented in rtopDisc.rtop rtopDisc.rtopVariogram rtopDisc.SpatialPolygons rtopDisc.SpatialPolygonsDataFrame

discBinAreas = function(object,object2,dist,resol,stype) {
  ad = sqrt(object)/2
  ad[2] = sqrt(object2)/2
  Srl = list()
  dAreas = list()
  for (i in 1:2) {
    pt1 = c(0,ifelse(i==1,0,dist))
    x1 = pt1[1]-ad[i]
    x2 = pt1[1]+ad[i]
    y1 = pt1[2]-ad[i]
    y2 = pt1[2]+ad[i]
    boun = data.frame(x=c(x1,x2,x2,x1,x1),y=c(y1,y1,y2,y2,y1))
    boun = Polygon(SpatialPoints(boun))
    dAreas[[i]] = spsample(boun,resol,stype,offset = c(0.5,0.5))
  }
  dAreas
}



rtopDisc.rtopVariogram = function(object, params = list(), ...) {
  params = getRtopParams(params, ...)
  resol = params$hresol ^2
  hstype = params$hstype
# Discretize binned areas from the variogram for pdf or Ghosh calculation
#  rta = list()
#  for (i in 1:dim(object)[1]) {
#    rta[[i]] = rtopDiscAreas(object$a1[i],
#            object$a2[i],object$dist[i],
#            resol = resol,stype = stype)
#a1 = object$a1[i]
#a2 = object$a2[i]
#dist = object$dist[i]
#rtopDiscAreas(a1,a2,dist,resol = resol,stype = stype)
#  }

  mapply(discBinAreas,as.list(object$a1),
            as.list(object$a2),as.list(object$dist),
            MoreArgs = list(resol = resol,stype = hstype),SIMPLIFY = FALSE)
}




rtopDisc.rtop = function(object, params = list(), ...) {
  object$params = getRtopParams(object$params, newPar = params, ...)
  observations = object$observations
  if ("predictionLocations" %in% names(object)){
    predictionLocations = object$predictionLocations
    bbo = data.frame(t(bbox(observations)))
    bbp = data.frame(t(bbox(predictionLocations)))
    bb = rbind(bbo,bbp)
  } else bb = bbox(observations)
  coordinates(bb) =  as.formula(paste("~",names(bb)[1],"+",names(bb)[2]))
  object$dObs = rtopDisc(observations,bbox(bb),params = object$params)
  object@observations@data$ddim = unlist(lapply(object$dObs,FUN = function(are) dim(coordinates(are)[1])))
  if ("predictionLocations" %in% names(object)){
    object$dPred = rtopDisc(predictionLocations,bbox(bb),params = object$params)
    object@predictionLocations@data$ddim = unlist(lapply(object$dPred,FUN = function(are) dim(coordinates(are)[1])))
  }
  object
}



rtopDisc.sf = function(object, params = list(), bb = st_bbox(object), ...) {
  params = getRtopParams(params, ...)
  stype = params$rstype
  resol = params$rresol
  debug.level = params$debug.level
  if (stype == "random" | stype == "regular") {
    lapply(st_geometry(object),FUN=function(pol) st_sample(pol,size = resol, type = stype, offset=c(0.5,0.5)))
  } else if (stype == "rtop") {
    bbdia = sqrt(bbArea(bb))
    small = bbdia/100
    ires0 = 1
    nps = dim(object)[1]
    spp = vector("list",nps)
    
    lfun = function(lpoly, resol, ires0, bbdia, small) {
      if (!is.na(st_crs(lpoly))) lpoly = st_set_crs(lpoly, NA)
      ba = st_bbox(lpoly)
      ipts = resol-1
      ires = ires0
      while (ipts < resol) {
        ires = ires*2
        xd = bbdia/(ires)
        if (bbArea(ba)/(xd*xd) > (resol-2)) {
          x = seq(bb[[1]]-small,bb[[3]]+small,xd)
          y = seq(bb[[2]]-small,bb[[4]]+small,xd)
          x = x[x > ba[[1]] & x < ba[[3]] ]
          y = y[y > ba[[2]] & y < ba[[4]] ]
          pts = expand.grid(x=x,y=y)
          if (dim(pts)[1] >= 1) {
            pts = st_as_sf(pts, coords = c("x", "y"))
            pts = pts[st_intersects(lpoly, pts)[[1]],1]
            ipts = dim(pts)[1]
          }
        }
      }
      pts    
    }
    
    
    if (!is.null(params$nclus) && params$nclus > 1 && 
        dim(object)[1]*params$rresol/100 > params$cnAreas) {
      if (!suppressMessages(suppressWarnings(requireNamespace("parallel"))))
        stop("nclus is > 1, but package parallel is not available")    
      nclus = params$nclus
      
      cl = rtopCluster(nclus, type = params$clusType, outfile = params$outfile)
      #      cl = rtopCluster(nclus, {require(rtop); bbArea = rtop:::bbArea}, type = params$clusType)
      
      parallel::clusterExport(cl, c("resol", "ires0", "bbdia", "small"), envir = environment())
      spp = parallel::clusterApply(cl, st_geometry(object), fun = function(x) lfun(x, resol, ires0, bbdia, small))
    } else {
      if (interactive() & debug.level <= 1) {
        pb = txtProgressBar(1, nps, style = 3)
      }
      print(paste("Sampling points from ", nps, "areas"))
      for (ip in 1:nps) {
        
        spp[[ip]] = lfun(st_geometry(object)[ip], resol, ires0, bbdia, small)
        ipts = dim(spp[[ip]])[1]
        if (debug.level > 1) { 
          print(paste("Sampling from area number",ip,"containing",ipts,"points"))
        } else if (interactive()) {
          setTxtProgressBar(pb, ip)
        }
      }
      if (interactive() & debug.level <=1) close(pb)
      if (debug.level >= 0) print(paste("Sampled on average",  
                                        round(mean(unlist(lapply(spp, FUN = function(sppp) dim(sppp)[1]))),2), 
                                        "points from", nps, "areas"))
    }
    spp
  } else stop(paste("Unknown sampling type:",stype))
}





rtopDisc.SpatialPolygonsDataFrame = function(object, params = list(), bb = bbox(object), ...) {
  rtopDisc(as(object,"SpatialPolygons"), params = params, bb, ...)
}

rtopDisc.SpatialPolygons = function(object, params = list(), bb = bbox(object), ...) {
  params = getRtopParams(params, ...)
  stype = params$rstype
  resol = params$rresol
  debug.level = params$debug.level
  if (stype == "random" | stype == "regular") {
    lapply(object@polygons,FUN=function(pol) spsample(pol,resol,stype,offset=c(0.5,0.5)))
  } else if (stype == "rtop") {
    bbdia = sqrt(bbArea(bb))
    small = bbdia/100
    ires0 = 1
    nps = length(object@polygons)
    spp = vector("list",nps)

    lfun = function(pol, resol, ires0, bbdia, small) {
      lpoly = SpatialPolygons(list(pol))
      ba = bbox(lpoly)
      ipts = resol-1
      ires = ires0
      while (ipts < resol) {
        ires = ires*2
        xd = bbdia/(ires)
        if (bbArea(ba)/(xd*xd) > (resol-2)) {
          x = seq(bb[[1]]-small,bb[[3]]+small,xd)
          y = seq(bb[[2]]-small,bb[[4]]+small,xd)
          x = x[x > ba[[1]] & x < ba[[3]] ]
          y = y[y > ba[[2]] & y < ba[[4]] ]
          pts = expand.grid(x=x,y=y)
          if (dim(pts)[1] >= 1) {
            coordinates(pts) = ~x+y
            pts = pts[!is.na(over(pts,lpoly)),]
            ipts = dim(coordinates(pts))[1]
          }
        }
      }
      pts    
    }
    

    if (!is.null(params$nclus) && params$nclus > 1 && 
          length(object@polygons)*params$rresol/100 > params$cnAreas) {
      if (!suppressMessages(suppressWarnings(requireNamespace("parallel"))))
        stop("nclus is > 1, but package parallel is not available")    
      nclus = params$nclus
      
      cl = rtopCluster(nclus, type = params$clusType, outfile = params$outfile)
#      cl = rtopCluster(nclus, {require(rtop); bbArea = rtop:::bbArea}, type = params$clusType)
      
      spp = parallel::clusterApply(cl, object@polygons, fun = function(x) lfun(x, resol, ires0, bbdia, small))

    } else {
      if (interactive() & debug.level <= 1) {
        pb = txtProgressBar(1, nps, style = 3)
      }
      print(paste("Sampling points from ", nps, "areas"))
      for (ip in 1:nps) {

        spp[[ip]] = lfun(object@polygons[[ip]], resol, ires0, bbdia, small)
        ipts = dim(coordinates(spp[[ip]]))[1]
        if (debug.level > 1) { 
          print(paste("Sampling from area number",ip,"containing",ipts,"points"))
        } else if (interactive()) {
          setTxtProgressBar(pb, ip)
        }
      }
      if (interactive() & debug.level <=1) close(pb)
      if (debug.level >= 0) print(paste("Sampled on average",  round(mean(unlist(lapply(spp, length))),2), 
                  "points from", nps, "areas"))
    }
   spp
  } else stop(paste("Unknown sampling type:",stype))
}

Try the rtop package in your browser

Any scripts or data that you put into this service are public.

rtop documentation built on July 4, 2024, 9:09 a.m.