Description Usage Format References Examples
pop
is a suppositious data frame for a small population with 5 elements. It is used for simple illustration of survey sampling
estimators.
1 |
A data frame with 5 observations on the following 3 variables.
id
a numeric vector of individual identification values
X
a numeric vector of first characteristic
Y
a numeric vector of second characteristic
Kauermann, Goeran/Kuechenhoff, Helmut (2010): Stichproben. Methoden und praktische Umsetzung mit R. Springer.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | data(pop)
print(pop)
## 1) Usage of Smean()
data(pop)
Y <- pop$Y
Y
# Draw a random sample pop size=3
set.seed(93456)
y <- sample(x = Y, size = 3)
sort(y)
# Estimation with infiniteness correction
est <- Smean(y = y, N = length(pop$Y))
est
## 2) Usage of mbes()
data(pop)
# Draw a random sample of size=3
set.seed(802016)
data <- pop[sample(1:5, size=3),]
names(data) <- c('id','x','y')
# difference estimator
mbes(formula=y~x, data=data, aux=15, N=5, method='diff', level=0.95)
# ratio estimator
mbes(formula=y~x, data=data, aux=15, N=5, method='ratio', level=0.95)
# regression estimator
mbes(formula=y~x, data=data, aux=15, N=5, method='regr', level=0.95)
|
Loading required package: pps
Loading required package: sampling
Loading required package: survey
Loading required package: grid
Loading required package: Matrix
Loading required package: survival
Attaching package: ‘survival’
The following objects are masked from ‘package:sampling’:
cluster, strata
Attaching package: ‘survey’
The following object is masked from ‘package:graphics’:
dotchart
id X Y
1 1 11 9
2 2 11 10
3 3 11 11
4 4 21 18
5 5 21 22
[1] 9 10 11 18 22
[1] 9 11 22
Smean object: Sample mean estimate
With finite population correction: N=5
Mean estimate: 14
Standard error: 2.556
95% confidence interval: [8.9903,19.0097]
mbes object: Model Based Estimation of Population Mean
Population size N = 5, sample size n = 3
Values for auxiliary variable:
X.mean.1 = 15, x.mean.1 = 17.6667
----------------------------------------------------------------
Difference Estimate
Mean estimate: 14
Standard error: 0.7303
95% confidence interval [12.5686,15.4314]
mbes object: Model Based Estimation of Population Mean
Population size N = 5, sample size n = 3
Values for auxiliary variable:
X.mean.1 = 15, x.mean.1 = 17.6667
----------------------------------------------------------------
Ratio Estimate
Mean estimate: 14.1509
Standard error: 0.74
95% confidence interval [12.7006,15.6013]
mbes object: Model Based Estimation of Population Mean
Population size N = 5, sample size n = 3
Values for auxiliary variable:
X.mean.1 = 15, x.mean.1 = 17.6667
----------------------------------------------------------------
Linear Regression Estimate
Mean estimate: 14
Standard error: 1.0328
95% confidence interval [11.9758,16.0242]
----------------------------------------------------------------
Linear Regression Model:
Call:
lm(formula = formula, data = data)
Residuals:
5 4 2
2.000e+00 -2.000e+00 6.661e-16
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.0000 6.3340 -0.158 0.900
x 1.0000 0.3464 2.887 0.212
Residual standard error: 2.828 on 1 degrees of freedom
Multiple R-squared: 0.8929, Adjusted R-squared: 0.7857
F-statistic: 8.333 on 1 and 1 DF, p-value: 0.2123
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.