Description Usage Arguments Details Value Author(s) References See Also Examples
mbes is used for model based estimation of population means using auxiliary variables. Difference, ratio and regression estimates are available.
1 |
formula |
object of class |
data |
data frame containing variables in the model |
aux |
known mean of auxiliary variable, which provides secondary information |
N |
positive integer for population size. Default is |
method |
estimation method. Options are |
level |
coverage probability for confidence intervals. Default is |
... |
further options for linear regression model |
The option method='simple'
calculates the simple sample estimation without using the auxiliary variable.
The option method='diff'
calculates the difference estimate, method='ratio'
the ratio estimate, and method='regr'
the regression estimate which is based on the selected model. The option method='all'
calculates the simple and all model based estimates.
For methods 'diff'
, 'ratio'
and 'all'
the formula has to be y~x
with y
primary and x
secondary information.
For method 'regr'
, it is the symbolic description of the linear regression model. In this case, it can be used more than one auxiliary variable. Thus, aux
has to be a vector of the same length as the number of auxiliary variables in order as specified in the formula.
The function mbes
returns an object, which is a list consisting of the components
call |
is a list of call components: |
info |
is a list of further information components: |
simple |
is a list of result components, if |
diff |
is a list of result components, if |
ratio |
is a list of result components, if |
regr |
is a list of result components, if |
Juliane Manitz
Kauermann, Goeran/Kuechenhoff, Helmut (2010): Stichproben. Methoden und praktische Umsetzung mit R. Springer.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | ## 1) simple suppositious example
data(pop)
# Draw a random sample of size=3
set.seed(802016)
data <- pop[sample(1:5, size=3),]
names(data) <- c('id','x','y')
# difference estimator
mbes(formula=y~x, data=data, aux=15, N=5, method='diff', level=0.95)
# ratio estimator
mbes(formula=y~x, data=data, aux=15, N=5, method='ratio', level=0.95)
# regression estimator
mbes(formula=y~x, data=data, aux=15, N=5, method='regr', level=0.95)
## 2) Bundestag election
data(election)
# draw sample of size n = 20
N <- nrow(election)
set.seed(67396)
sample <- election[sort(sample(1:N, size=20)),]
# secondary information SPD in 2002
X.mean <- mean(election$SPD_02)
# forecast proportion of SPD in election of 2005
mbes(SPD_05 ~ SPD_02, data=sample, aux=X.mean, N=N, method='all')
# true value
Y.mean <- mean(election$SPD_05)
Y.mean
# Use a second predictor variable
X.mean2 <- c(mean(election$SPD_02),mean(election$GREEN_02))
# forecast proportion of SPD in election of 2005 with two predictors
mbes(SPD_05 ~ SPD_02+GREEN_02, data=sample, aux=X.mean2, N=N, method= 'regr')
## 3) money sample
data(money)
mu.X <- mean(money$X)
x <- money$X[which(!is.na(money$y))]
y <- na.omit(money$y)
# estimation
mbes(y~x, aux=mu.X, N=13, method='all')
## 4) model based two-phase sampling with mbes()
id <- 1:1000
x <- rep(c(1,0,1,0),times=c(10,90,70,830))
y <- rep(c(1,0,NA),times=c(15,85,900))
phase <- rep(c(2,1), times=c(100,900))
data <- data.frame(id,x,y,phase)
# mean of x out of first phase
mean.x <- mean(data$x)
mean.x
N1 <- length(data$x)
# calculation of estimation for y
est.y <- mbes(y~x, data=data, aux=mean.x, N=N1, method='ratio')
est.y
# correction of standard error with uncertaincy in first phase
v.y <- var(data$y, na.rm=TRUE)
se.y <- sqrt(est.y$ratio$se^2 + v.y/N1)
se.y
# corrected confidence interval
lower <- est.y$ratio$mean - qnorm(0.975)*se.y
upper <- est.y$ratio$mean + qnorm(0.975)*se.y
c(lower, upper)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.