pps.sampling: Sampling with Probabilities Proportional to Size

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/pps.sampling.R

Description

The function provides sample techniques with sampling probabilities which are proportional to the size of a quantity z.

Usage

1
pps.sampling(z, n, id = 1:N, method = 'sampford', return.PI = FALSE)

Arguments

z

vector of quantities which determine the sampling probabilities in the population

n

positive integer for sample size

id

an optional vector with identification values for population elements. Default is 'id = 1:N', where 'N' is length of 'z'.

method

the sampling method to be used. Options are 'sampford', 'tille', 'midzuno' or 'madow'.

return.PI

logical. If TRUE the pairwise inclusion probabilities for all individuals in the population are returned.

Details

The different methods vary in their run time. Therefore, method='sampford' is stopped if N > 200 or if n/N < 0.3. method='tille' is stopped if N > 500. In case of large populations use method='midzuno' or method='madow'.

Value

The function pps.sampling returns a value, which is a list consisting of the components

call

is a list of call components: z vector of quantity data, n sample size, id identification values, and method sampling method

sample

resulted sample

pik

inclusion probabilities

PI

sample second order inclusion probabilities

PI.full

full second order inclusion probabilities

Author(s)

Juliane Manitz

References

Kauermann, Goeran/Kuechenhoff, Helmut (2010): Stichproben. Methoden und praktische Umsetzung mit R. Springer.

See Also

htestimate

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
## 1) simple suppositious example
data <- data.frame(id = 1:7, z = c(1.8, 2 ,3.2 ,2.9 ,1.5 ,2.0 ,2.2))
# Usage of pps.sampling for Sampford method
set.seed(178209)
pps.sample_sampford <- pps.sampling(z=data$z, n=2, method='sampford', return.PI=FALSE)
pps.sample_sampford
# sampling elements
id.sample <- pps.sample_sampford$sample
id.sample
# other methods
set.seed(178209)
pps.sample_tille <- pps.sampling(z=data$z, n=2, method='tille')
pps.sample_tille
set.seed(178209)
pps.sample_midzuno <- pps.sampling(z=data$z, n=2, method='midzuno')
pps.sample_midzuno
set.seed(178209)
pps.sample_madow <- pps.sampling(z=data$z, n=2, method='madow')
pps.sample_madow

## 2) influenza
data(influenza)
summary(influenza)

set.seed(108506)
pps <- pps.sampling(z=influenza$population,n=20,method='midzuno')
pps
sample <- influenza[pps$sample,]
sample

Example output

Loading required package: pps
Loading required package: sampling
Loading required package: survey
Loading required package: grid
Loading required package: Matrix
Loading required package: survival

Attaching package: 'survival'

The following objects are masked from 'package:sampling':

    cluster, strata


Attaching package: 'survey'

The following object is masked from 'package:graphics':

    dotchart


pps.sampling object: Sample with probabilities proportional to size
Method of Sampford:

PPS sample: 
[1] 3 7

Sample probabilities: 
           [,1]       [,2]
[1,] 0.41025641 0.07281474
[2,] 0.07281474 0.28205128
[1] 3 7

pps.sampling object: Sample with probabilities proportional to size
Method of Tille:

PPS sample: 
[1] 1 3

Sample probabilities: 
           [,1]       [,2]
[1,] 0.23076923 0.05955335
[2,] 0.05955335 0.41025641

pps.sampling object: Sample with probabilities proportional to size
Method of Midzuno:

PPS sample: 
[1] 3 4

Sample probabilities: 
           [,1]       [,2]
[1,] 0.41025641 0.08974359
[2,] 0.08974359 0.37179487
Warning message:
In pps.sampling(z = data$z, n = 2, method = "madow") :
  Systematic Sample with zeros in 'PI': For calculating estimates use approximate methods.

pps.sampling object: Sample with probabilities proportional to size
Method of Madow:

PPS sample: 
[1] 3 6

Sample probabilities: 
          [,1]      [,2]
[1,] 0.4102564 0.2307692
[2,] 0.2307692 0.2564103
       id                        district     population          cases       
 Min.   : 1001   LK Aachen           :  1   Min.   :  34719   Min.   :  0.00  
 1st Qu.: 5877   LK Ahrweiler        :  1   1st Qu.: 104553   1st Qu.:  9.00  
 Median : 8331   LK Aichach-Friedberg:  1   Median : 145130   Median : 27.00  
 Mean   : 8468   LK Alb-Donau-Kreis  :  1   Mean   : 193910   Mean   : 44.58  
 3rd Qu.: 9778   LK Altenburger Land :  1   3rd Qu.: 244154   3rd Qu.: 59.00  
 Max.   :16077   LK Altenkirchen     :  1   Max.   :1770629   Max.   :410.00  
                 (Other)             :418                                     

pps.sampling object: Sample with probabilities proportional to size
Method of Midzuno:

PPS sample: 
 [1]  35  83 107 109 130 140 157 210 219 223 257 273 290 294 324 342 361 371 418
[20] 423

Sample probabilities: 
             [,1]         [,2]         [,3]         [,4]         [,5]
 [1,] 0.090052479 0.0053250174 0.0059535012 0.0047392541 0.0034975812
 [2,] 0.005325017 0.0622266431 0.0040841690 0.0032027173 0.0023764993
 [3,] 0.005953501 0.0040841690 0.0702093391 0.0036435201 0.0026981161
 [4,] 0.004739254 0.0032027173 0.0036435201 0.0549863651 0.0020847939
 [5,] 0.003497581 0.0023764993 0.0026981161 0.0020847939 0.0401586824
 [6,] 0.003732237 0.0025338499 0.0028776442 0.0022220297 0.0016004173
 [7,] 0.006483352 0.0045523488 0.0050892276 0.0040569473 0.0029997593
 [8,] 0.008401858 0.0060389695 0.0067597276 0.0053697111 0.0039575729
 [9,] 0.012398528 0.0088061102 0.0098845055 0.0078132411 0.0057404116
[10,] 0.005174948 0.0035019448 0.0039719917 0.0030984806 0.0023004465
[11,] 0.002864379 0.0019502481 0.0022124945 0.0017123914 0.0012252743
[12,] 0.008450507 0.0060727695 0.0067978960 0.0053995583 0.0039793498
[13,] 0.009647954 0.0069047173 0.0077373683 0.0061342117 0.0045153648
[14,] 0.003036693 0.0020665218 0.0023448451 0.0018140834 0.0012971039
[15,] 0.006431964 0.0045069425 0.0050384741 0.0040168511 0.0029705044
[16,] 0.004274207 0.0028953870 0.0032909440 0.0025366183 0.0018582626
[17,] 0.001019824 0.0006958571 0.0007887969 0.0006115611 0.0004389276
[18,] 0.021162722 0.0148352675 0.0166928972 0.0131373023 0.0096249324
[19,] 0.001754391 0.0011966398 0.0013566479 0.0010515130 0.0007543015
[20,] 0.007120642 0.0051154636 0.0057186561 0.0045542072 0.0033625680
              [,6]         [,7]        [,8]        [,9]        [,10]
 [1,] 0.0037322373 0.0064833515 0.008401858 0.012398528 0.0051749484
 [2,] 0.0025338499 0.0045523488 0.006038970 0.008806110 0.0035019448
 [3,] 0.0028776442 0.0050892276 0.006759728 0.009884505 0.0039719917
 [4,] 0.0022220297 0.0040569473 0.005369711 0.007813241 0.0030984806
 [5,] 0.0016004173 0.0029997593 0.003957573 0.005740412 0.0023004465
 [6,] 0.0429213432 0.0032000875 0.004223948 0.006129724 0.0024525529
 [7,] 0.0032000875 0.0776962790 0.007376869 0.010839972 0.0044258747
 [8,] 0.0042239481 0.0073768695 0.101469709 0.013610984 0.0058670986
 [9,] 0.0061297244 0.0108399724 0.013610984 0.145720691 0.0085497394
[10,] 0.0024525529 0.0044258747 0.005867099 0.008549739 0.0603389749
[11,] 0.0013160329 0.0024584545 0.003239456 0.004693184 0.0018882346
[12,] 0.0042472268 0.0074191704 0.009478120 0.013668384 0.0058998664
[13,] 0.0048202032 0.0084603611 0.010675567 0.015081223 0.0067064091
[14,] 0.0013934264 0.0026058836 0.003434764 0.004977611 0.0020007067
[15,] 0.0031688154 0.0055617878 0.007317016 0.010747307 0.0043818549
[16,] 0.0019798777 0.0036619353 0.004839951 0.007032667 0.0028018497
[17,] 0.0004710923 0.0008759647 0.001152750 0.001667949 0.0006738797
[18,] 0.0102821064 0.0183855203 0.023526910 0.031543156 0.0143947850
[19,] 0.0008096773 0.0015067189 0.001983242 0.002870225 0.0011588027
[20,] 0.0035879141 0.0062419697 0.008119152 0.011989184 0.0049717937
             [,11]       [,12]       [,13]        [,14]        [,15]
 [1,] 0.0028643788 0.008450507 0.009647954 0.0030366928 0.0064319641
 [2,] 0.0019502481 0.006072769 0.006904717 0.0020665218 0.0045069425
 [3,] 0.0022124945 0.006797896 0.007737368 0.0023448451 0.0050384741
 [4,] 0.0017123914 0.005399558 0.006134212 0.0018140834 0.0040168511
 [5,] 0.0012252743 0.003979350 0.004515365 0.0012971039 0.0029705044
 [6,] 0.0013160329 0.004247227 0.004820203 0.0013934264 0.0031688154
 [7,] 0.0024584545 0.007419170 0.008460361 0.0026058836 0.0055617878
 [8,] 0.0032394561 0.009478120 0.010675567 0.0034347640 0.0073170160
 [9,] 0.0046931835 0.013668384 0.015081223 0.0049776115 0.0107473066
[10,] 0.0018882346 0.005899866 0.006706409 0.0020007067 0.0043818549
[11,] 0.0327578552 0.003257213 0.003694280 0.0010480086 0.0024346001
[12,] 0.0032572130 0.102010224 0.010724216 0.0034536096 0.0073589162
[13,] 0.0036942799 0.010724216 0.115314393 0.0039174705 0.0083902417
[14,] 0.0010480086 0.003453610 0.003917471 0.0347627729 0.0025805668
[15,] 0.0024346001 0.007358916 0.008390242 0.0025805668 0.0769701592
[16,] 0.0015276777 0.004866735 0.005525980 0.0016180460 0.0036259547
[17,] 0.0003527623 0.001159043 0.001313939 0.0003761049 0.0008675107
[18,] 0.0078606233 0.023638836 0.026393757 0.0083392295 0.0182213615
[19,] 0.0006059566 0.001994077 0.002260750 0.0006461439 0.0014921643
[20,] 0.0027542889 0.008166424 0.009329958 0.0029198540 0.0061912162
             [,16]        [,17]       [,18]        [,19]       [,20]
 [1,] 0.0042742071 0.0010198236 0.021162722 0.0017543911 0.007120642
 [2,] 0.0028953870 0.0006958571 0.014835268 0.0011966398 0.005115464
 [3,] 0.0032909440 0.0007887969 0.016692897 0.0013566479 0.005718656
 [4,] 0.0025366183 0.0006115611 0.013137302 0.0010515130 0.004554207
 [5,] 0.0018582626 0.0004389276 0.009624932 0.0007543015 0.003362568
 [6,] 0.0019798777 0.0004710923 0.010282106 0.0008096773 0.003587914
 [7,] 0.0036619353 0.0008759647 0.018385520 0.0015067189 0.006241970
 [8,] 0.0048399514 0.0011527504 0.023526910 0.0019832423 0.008119152
 [9,] 0.0070326670 0.0016679492 0.031543156 0.0028702253 0.011989184
[10,] 0.0028018497 0.0006738797 0.014394785 0.0011588027 0.004971794
[11,] 0.0015276777 0.0003527623 0.007860623 0.0006059566 0.002754289
[12,] 0.0048667349 0.0011590435 0.023638836 0.0019940766 0.008166424
[13,] 0.0055259804 0.0013139393 0.026393757 0.0022607503 0.009329958
[14,] 0.0016180460 0.0003761049 0.008339229 0.0006461439 0.002919854
[15,] 0.0036259547 0.0008675107 0.018221362 0.0014921643 0.006191216
[16,] 0.0493637409 0.0005460989 0.011810244 0.0009388111 0.004108154
[17,] 0.0005460989 0.0116140248 0.002790485 0.0002041539 0.000980808
[18,] 0.0118102439 0.0027904849 0.242136509 0.0048028196 0.020421365
[19,] 0.0009388111 0.0002041539 0.004802820 0.0199937150 0.001687221
[20,] 0.0041081542 0.0009808080 0.020421365 0.0016872205 0.086701381
       id            district population cases
35   5554           LK Borken     370196    86
83   8117       LK Goeppingen     255807    67
107  3254       LK Hildesheim     288623    85
109  6434  LK Hochtaunuskreis     226043     8
130  3457             LK Leer     165088     5
140  3355        LK Lueneburg     176445    57
157  5770 LK Minden-Luebbecke     319401    86
210  8119  LK Rems-Murr-Kreis     417131   110
219  5382 LK Rhein-Sieg-Kreis     599042    72
223  9187        LK Rosenheim     248047    67
257  1061        LK Steinburg     134664    22
273  5978             LK Unna     419353    42
290  5170            LK Wesel     474045     8
294 15091       LK Wittenberg     142906    22
324  5314             SK Bonn     316416    11
342 16051           SK Erfurt     202929   188
361  9464              SK Hof      47744    12
371  5315            SK Koeln     995397    35
418  3405    SK Wilhelmshaven      82192    17
423  5124        SK Wuppertal     356420    62

samplingbook documentation built on April 3, 2021, 1:06 a.m.