Description Usage Arguments Details Value Author(s) References See Also Examples
Calculates Horvitz-Thompson estimate with different methods for variance estimation such as Yates and Grundy, Hansen-Hurwitz and Hajek.
1 | htestimate(y, N, PI, pk, pik, method = 'yg')
|
y |
vector of observations |
N |
integer for population size |
PI |
square matrix of second order inclusion probabilities with |
pk |
vector of first order inclusion probabilities of length |
pik |
an optional vector of first order inclusion probabilities of length |
method |
method to be used for variance estimation. Options are |
For using methods 'yg'
or 'ht'
has to be provided matrix PI
, and for 'hh'
and 'ha'
has to be specified vector pk
of inclusion probabilities.
Additionally, for Hajek method 'ha'
can be specified pik
. Unless, an approximate Hajek method is used.
The function htestimate
returns a value, which is a list consisting of the components
call |
is a list of call components: |
mean |
mean estimate |
se |
standard error of the mean estimate |
Juliane Manitz
Kauermann, Goeran/Kuechenhoff, Helmut (2010): Stichproben. Methoden und praktische Umsetzung mit R. Springer.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | data(influenza)
summary(influenza)
# pps.sampling()
set.seed(108506)
pps <- pps.sampling(z=influenza$population,n=20,method='midzuno')
sample <- influenza[pps$sample,]
# htestimate()
N <- nrow(influenza)
# exact variance estimate
PI <- pps$PI
htestimate(sample$cases, N=N, PI=PI, method='yg')
htestimate(sample$cases, N=N, PI=PI, method='ht')
# approximate variance estimate
pk <- pps$pik[pps$sample]
htestimate(sample$cases, N=N, pk=pk, method='hh')
pik <- pps$pik
htestimate(sample$cases, N=N, pk=pk, pik=pik, method='ha')
# without pik just approximate calculation of Hajek method
htestimate(sample$cases, N=N, pk=pk, method='ha')
# calculate confidence interval based on normal distribution for number of cases
est.ht <- htestimate(sample$cases, N=N, PI=PI, method='ht')
est.ht$mean*N
lower <- est.ht$mean*N - qnorm(0.975)*N*est.ht$se
upper <- est.ht$mean*N + qnorm(0.975)*N*est.ht$se
c(lower,upper)
# true number of influenza cases
sum(influenza$cases)
|
Loading required package: pps
Loading required package: sampling
Loading required package: survey
Loading required package: grid
Loading required package: Matrix
Loading required package: survival
Attaching package: 'survival'
The following objects are masked from 'package:sampling':
cluster, strata
Attaching package: 'survey'
The following object is masked from 'package:graphics':
dotchart
id district population cases
Min. : 1001 LK Aachen : 1 Min. : 34719 Min. : 0.00
1st Qu.: 5877 LK Ahrweiler : 1 1st Qu.: 104553 1st Qu.: 9.00
Median : 8331 LK Aichach-Friedberg: 1 Median : 145130 Median : 27.00
Mean : 8468 LK Alb-Donau-Kreis : 1 Mean : 193910 Mean : 44.58
3rd Qu.: 9778 LK Altenburger Land : 1 3rd Qu.: 244154 3rd Qu.: 59.00
Max. :16077 LK Altenkirchen : 1 Max. :1770629 Max. :410.00
(Other) :418
htestimate object: Estimator for samples with probabilities proportional to size
Method of Yates and Grundy:
Mean estimator: 40.36766
Standard Error: 8.059507
htestimate object: Estimator for samples with probabilities proportional to size
Method of Horvitz-Thompson:
Mean estimator: 40.36766
Standard Error: 8.227719
htestimate object: Estimator for samples with probabilities proportional to size
Method of Hansen-Hurwitz (approximate variance):
Mean estimator: 40.36766
Standard Error: 8.534792
htestimate object: Estimator for samples with probabilities proportional to size
Method of Hajek (approximate variance):
Mean estimator: 40.36766
Standard Error: 8.262482
htestimate object: Estimator for samples with probabilities proportional to size
Method of Hajek (approximate variance):
Mean estimator: 40.36766
Standard Error: 8.244296
Warning message:
In htestimate(sample$cases, N = N, pk = pk, method = "ha") :
Without input of 'pik' just approximative calculation of Hajek method is possible.
[1] 17115.89
[1] 10278.45 23953.33
[1] 18900
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.