sample.size.prop: Sample Size Calculation for Proportion Estimation

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/sample.size.prop.R

Description

The function sample.size.prop returns the sample size needed for proportion estimation either with or without consideration of finite population correction.

Usage

1
sample.size.prop(e, P = 0.5, N = Inf, level = 0.95)

Arguments

e

positive number specifying the precision which is half width of confidence interval

P

expected proportion of events with domain between values 0 and 1. Default is P=0.5.

N

positive integer for population size. Default is N=Inf, which means that calculations are carried out without finite population correction.

level

coverage probability for confidence intervals. Default is level=0.95.

Details

For meaningful calculation, precision e should be chosen smaller than 0.5, because the domain of P is between values 0 and 1. Furthermore, precision e should be smaller than proportion P, respectively (1-P).

Value

The function sample.size.prop returns a value, which is a list consisting of the components

call

is a list of call components e precision, P expected proportion, N population size, and level coverage probability for confidence intervals

n

estimate of sample size

Author(s)

Juliane Manitz

References

Kauermann, Goeran/Kuechenhoff, Helmut (2010): Stichproben. Methoden und praktische Umsetzung mit R. Springer.

See Also

Sprop, sample.size.mean

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
## 1) examples with different precisions
# precision 1% for election forecast of SPD in 2005
sample.size.prop(e=0.01, P=0.5, N=Inf)
data(election)
sample.size.prop(e=0.01, P=mean(election$SPD_02), N=Inf)
# precision 5% for questionnaire
sample.size.prop(e=0.05, P=0.5, N=300)
sample.size.prop(e=0.05, P=0.5, N=Inf)
# precision 10%
sample.size.prop(e=0.1, P=0.5, N=300)
sample.size.prop(e=0.1, P=0.5, N=1000)

## 2) tables in the book
# table 2.2
P_vector <- c(0.2, 0.3, 0.4, 0.5)
N_vector <- c(10, 100, 1000, 10000)
results <- matrix(NA, ncol=4, nrow=4)
for (i in 1:length(P_vector)){
  for (j in 1:length(N_vector)){
    x <- try(sample.size.prop(e=0.1, P=P_vector[i], N=N_vector[j]))
    if (class(x)=='try-error') {results[i,j] <- NA}
    else {results[i,j] <- x$n}
  }
}
dimnames(results) <- list(paste('P=',P_vector, sep=''), paste('N=',N_vector, sep=''))
results
# table 2.3
P_vector <- c(0.5, 0.1)
e_vector <- c(0.1, 0.05, 0.03, 0.02, 0.01)
results <- matrix(NA, ncol=2, nrow=5)
for (i in 1:length(e_vector)){
  for (j in 1:length(P_vector)){
    x <- try(sample.size.prop(e=e_vector[i], P=P_vector[j], N=Inf))
    if (class(x)=='try-error') {results[i,j] <- NA}
    else {results[i,j] <- x$n}
  }
}
dimnames(results) <- list(paste('e=',e_vector, sep=''), paste('P=',P_vector, sep=''))
results

samplingbook documentation built on April 3, 2021, 1:06 a.m.