R/imposeStart.R

Defines functions imposeStart

Documented in imposeStart

### Sunthud Pornprasertmanit
### Last updated: 2 April 2017


#' Specify starting values from a lavaan output
#'
#' This function will save the parameter estimates of a lavaan output and
#' impose those parameter estimates as starting values for another analysis
#' model. The free parameters with the same names or the same labels across two
#' models will be imposed the new starting values. This function may help to
#' increase the chance of convergence in a complex model (e.g.,
#' multitrait-multimethod model or complex longitudinal invariance model).
#'
#'
#' @param out The \code{lavaan} output that users wish to use the parameter
#' estimates as staring values for an analysis model
#' @param expr The original code that users use to run a lavaan model
#' @param silent Logical to print the parameter table with new starting values
#' @return A fitted lavaan model
#' @author Sunthud Pornprasertmanit (\email{psunthud@@gmail.com})
#' @examples
#'
#' ## The following example show that the longitudinal weak invariance model
#' ## using effect coding was not convergent with three time points but convergent
#' ## with two time points. Thus, the parameter estimates from the model with
#' ## two time points are used as starting values of the three time points.
#' ## The model with new starting values is convergent properly.
#'
#' weak2time <- '
#' 	# Loadings
#' 	f1t1 =~ LOAD1*y1t1 + LOAD2*y2t1 + LOAD3*y3t1
#'     f1t2 =~ LOAD1*y1t2 + LOAD2*y2t2 + LOAD3*y3t2
#'
#' 	# Factor Variances
#' 	f1t1 ~~ f1t1
#' 	f1t2 ~~ f1t2
#'
#' 	# Factor Covariances
#' 	f1t1 ~~ f1t2
#'
#' 	# Error Variances
#' 	y1t1 ~~ y1t1
#' 	y2t1 ~~ y2t1
#' 	y3t1 ~~ y3t1
#' 	y1t2 ~~ y1t2
#' 	y2t2 ~~ y2t2
#' 	y3t2 ~~ y3t2
#'
#' 	# Error Covariances
#' 	y1t1 ~~ y1t2
#' 	y2t1 ~~ y2t2
#' 	y3t1 ~~ y3t2
#'
#' 	# Factor Means
#' 	f1t1 ~ NA*1
#' 	f1t2 ~ NA*1
#'
#' 	# Measurement Intercepts
#' 	y1t1 ~ INT1*1
#' 	y2t1 ~ INT2*1
#' 	y3t1 ~ INT3*1
#' 	y1t2 ~ INT4*1
#' 	y2t2 ~ INT5*1
#' 	y3t2 ~ INT6*1
#'
#' 	# Constraints for Effect-coding Identification
#' 	LOAD1 == 3 - LOAD2 - LOAD3
#' 	INT1 == 0 - INT2 - INT3
#' 	INT4 == 0 - INT5 - INT6
#' '
#' model2time <- lavaan(weak2time, data = exLong)
#'
#' weak3time <- '
#' 	# Loadings
#' 	f1t1 =~ LOAD1*y1t1 + LOAD2*y2t1 + LOAD3*y3t1
#'     f1t2 =~ LOAD1*y1t2 + LOAD2*y2t2 + LOAD3*y3t2
#'     f1t3 =~ LOAD1*y1t3 + LOAD2*y2t3 + LOAD3*y3t3
#'
#' 	# Factor Variances
#' 	f1t1 ~~ f1t1
#' 	f1t2 ~~ f1t2
#' 	f1t3 ~~ f1t3
#'
#' 	# Factor Covariances
#' 	f1t1 ~~ f1t2 + f1t3
#' 	f1t2 ~~ f1t3
#'
#' 	# Error Variances
#' 	y1t1 ~~ y1t1
#' 	y2t1 ~~ y2t1
#' 	y3t1 ~~ y3t1
#' 	y1t2 ~~ y1t2
#' 	y2t2 ~~ y2t2
#' 	y3t2 ~~ y3t2
#' 	y1t3 ~~ y1t3
#' 	y2t3 ~~ y2t3
#' 	y3t3 ~~ y3t3
#'
#' 	# Error Covariances
#' 	y1t1 ~~ y1t2
#' 	y2t1 ~~ y2t2
#' 	y3t1 ~~ y3t2
#' 	y1t1 ~~ y1t3
#' 	y2t1 ~~ y2t3
#' 	y3t1 ~~ y3t3
#' 	y1t2 ~~ y1t3
#' 	y2t2 ~~ y2t3
#' 	y3t2 ~~ y3t3
#'
#' 	# Factor Means
#' 	f1t1 ~ NA*1
#' 	f1t2 ~ NA*1
#' 	f1t3 ~ NA*1
#'
#' 	# Measurement Intercepts
#' 	y1t1 ~ INT1*1
#' 	y2t1 ~ INT2*1
#' 	y3t1 ~ INT3*1
#' 	y1t2 ~ INT4*1
#' 	y2t2 ~ INT5*1
#' 	y3t2 ~ INT6*1
#' 	y1t3 ~ INT7*1
#' 	y2t3 ~ INT8*1
#' 	y3t3 ~ INT9*1
#'
#' 	# Constraints for Effect-coding Identification
#' 	LOAD1 == 3 - LOAD2 - LOAD3
#' 	INT1 == 0 - INT2 - INT3
#' 	INT4 == 0 - INT5 - INT6
#' 	INT7 == 0 - INT8 - INT9
#' '
#' ### The following command does not provide convergent result
#' # model3time <- lavaan(weak3time, data = exLong)
#'
#' ### Use starting values from the model with two time points
#' model3time <- imposeStart(model2time, lavaan(weak3time, data = exLong))
#' summary(model3time)
#'
#' @export
imposeStart <- function(out, expr, silent = TRUE) {
	if(!is(out, "lavaan")) stop("The first argument of the function must be a lavaan output.")
	template2 <- template <- substitute(expr)
	template2$do.fit <- FALSE
	model <- eval(expr = template2, enclos = parent.frame())
	ptmodel <- parTable(model)
	coefmodel <- lavaan::coef(model)
	coefout <- lavaan::coef(out)
	start <- coefout[match(names(coefmodel), names(coefout))]
	ptmodel$start[ptmodel$free != 0] <- start[ptmodel$free[ptmodel$free != 0]]
	ptmodel$est <- NULL
	ptmodel$se <- NULL
	if(!silent) {
		cat("########## Model with imposed starting values #########\n")
		print(ptmodel)
	}
	if("model" %in% names(template)) {
		template$model <- ptmodel
	} else {
		template[[2]] <- ptmodel
	}
	eval(expr = template, enclos = parent.frame())
}

Try the semTools package in your browser

Any scripts or data that you put into this service are public.

semTools documentation built on May 10, 2022, 9:05 a.m.