R/tree_bd.R

Defines functions tree_bd

Documented in tree_bd

#' Phylogenetic uncertainty - net diversification rate
#'
#' Performs estimates of diversification rate evaluating
#' uncertainty in trees topology.
#'
#' @param phy A phylogeny (class 'multiPhylo', see ?\code{ape}).
#' @param n.tree Number of times to repeat the analysis with n different trees picked 
#' randomly in the multiPhylo file. (If \code{n.tree} = "all", diversification will be estimated
#' among the set of trees provided in \code{phy})
#' @param method the method for estimating diversification rate ("ms" or "km") (see Details). 
#' @param track Print a report tracking function progress (default = TRUE)
#' @param ... Further arguments to be passed to \code{phylosig}
#' @details
#' This function estimates net diversification rate using \code{\link[geiger]{bd.ms}} 
#' (Magallon and Sanderson (2000) method) or speciation rate using \code{\link[geiger]{bd.km}}
#' (Kendall-Moran method) for n trees, randomly picked from a multiPhylo file.
#'
#' Output can be visualised using \code{sensi_plot}.
#'
#' @return The function \code{tree_bd} returns a list with the following
#' components:
#' @return \code{tree.bd.estimates}: Three number, diversification/speciation rate estimate 
#' ("Magallon and Sanderson" or "Kendall-Moran") for each run with a different phylogenetic tree.
#' @return \code{stats}: Main statistics for estimates across trees.\code{CI_low} and \code{CI_high} are the lower 
#' and upper limits of the 95% confidence interval.
#' @author Gustavo Paterno
#' @seealso \code{\link[geiger]{bd.ms}},
#' \code{\link{tree_phylm}},\code{\link{sensi_plot}}
#' @references 
#' 
#' Paterno, G. B., Penone, C. Werner, G. D. A. 
#' \href{http://doi.wiley.com/10.1111/2041-210X.12990}{sensiPhy: 
#' An r-package for sensitivity analysis in phylogenetic 
#' comparative methods.} Methods in Ecology and Evolution 
#' 2018, 9(6):1461-1467
#'
#' Magallon S and MJ Sanderson. 2000. Absolute diversification rates in 
#' angiosperm clades. Evolution 55:1762-1780.
#' 
#' @examples 
#'data("primates")
#'# To estimate diversification rate with Magallon and Sanderson method:
#'fit <- tree_bd(phy = primates.phy, n.tree = 30, method = "ms")
#'summary(fit)
#'sensi_plot(fit)
#'# To estimate speciation rate Kendall-Moran method
#'fit <- tree_bd(phy = primates.phy, n.tree = 30, method = "km")
#'summary(fit)
#'sensi_plot(fit)
#' @export
#'@importFrom geiger bd.ms bd.km

tree_bd <-
  function(phy,
           n.tree = "all",
           method = "ms",
           track = F,
           ...) {
    #Error check
    if (!method %in% c("ms", "km"))
      stop("method must be 'ms' or 'km'")
    if (n.tree == "all")
      n.tree <- length(phy)
    if (!inherits(phy, "multiPhylo"))
      stop("phy must be class 'multiPhylo'")
    if (length(phy) < n.tree)
      stop("'n.tree' must be smaller (or equal) than the number
                              of trees in the 'multiPhylo' object")
    
    # Pick n=n.tree random trees or all
    trees <- sample(length(phy), n.tree, replace = F)
    
    #Create the results data.frame
    tree.bd.estimates <- data.frame("n.tree" = numeric(),
                                    "estimate" = numeric())
    
    #Model calculation
    counter = 1
    if (track == TRUE)
      pb <- utils::txtProgressBar(min = 0, max = n.tree, style = 3)
    
    for (j in trees) {
      if (method == "ms") {
        mod.s <- geiger::bd.ms(phy = phy[[j]])
      }
      if (method == "km") {
        mod.s <- geiger::bd.km(phy = phy[[j]])
      }
      
      
      estimate <- mod.s
      
      if (track == TRUE)
        (utils::setTxtProgressBar(pb, counter))
      
      #write in a table
      estim.simu <- data.frame(j, estimate)
      tree.bd.estimates[counter,]  <- estim.simu
      counter = counter + 1
      
    }
    
    if (track == TRUE)
      on.exit(close(pb))
    #calculate mean and sd for each parameter
    #mean_by_tree <- stats::aggregate(. ~ n.tree, data = tree.physig.estimates, mean)
    
    statresults <- data.frame(
      min = apply(tree.bd.estimates, 2, min),
      max = apply(tree.bd.estimates, 2, max),
      mean = apply(tree.bd.estimates, 2, mean),
      sd_tree = apply(tree.bd.estimates, 2, stats::sd)
    )[-1,]
    
    statresults$CI_low  <-
      statresults$mean - qt(0.975, df = n.tree - 1) * statresults$sd_tree / sqrt(n.tree)
    statresults$CI_high <-
      statresults$mean + qt(0.975, df = n.tree - 1) * statresults$sd_tree / sqrt(n.tree)
    
    stats <- round(statresults[c(1), c(3, 5, 6, 1, 2)], digits = 7)
    
    cl <- match.call()
    res <- list(call = cl,
                tree.bd.estimates = tree.bd.estimates,
                stats = stats)
    class(res) <- "tree.bd"
    return(res)
  }

Try the sensiPhy package in your browser

Any scripts or data that you put into this service are public.

sensiPhy documentation built on April 14, 2020, 7:15 p.m.