Nothing
#' Phylogenetic uncertainty - Phylogenetic Logistic Regression
#'
#' Performs Phylogenetic logistic regression evaluating
#' uncertainty in trees topology.
#'
#' @param formula The model formula
#' @param data Data frame containing species traits with species as row names.
#' @param phy A phylogeny (class 'multiPhylo', see ?\code{ape}).
#' @param n.tree Number of times to repeat the analysis with n different trees picked
#' randomly in the multiPhylo file.
#' If NULL, \code{n.tree} = 2
#' @param btol Bound on searching space. For details see \code{phyloglm}.
#' @param track Print a report tracking function progress (default = TRUE)
#' @param ... Further arguments to be passed to \code{phyloglm}
#' @details
#' This function fits a phylogenetic logistic regression model using \code{\link[phylolm]{phyloglm}}
#' to n trees, randomly picked in a multiPhylo file.
#'
#' Currently, this function can only implement simple logistic models (i.e. \eqn{trait~
#' predictor}). In the future we will implement more complex models.
#'
#' Output can be visualised using \code{sensi_plot}.
#'
#' @return The function \code{tree_phyglm} returns a list with the following
#' components:
#' @return \code{formula}: The formula
#' @return \code{data}: Original full dataset
#' @return \code{sensi.estimates}: Coefficients, aic and the optimised
#' value of the phylogenetic parameter (e.g. \code{lambda}) for each regression with a
#' different phylogenetic tree.
#' @return \code{N.obs}: Size of the dataset after matching it with tree tips and removing NA's.
#' @return \code{stats}: Main statistics for model parameters.\code{CI_low} and \code{CI_high} are the lower
#' and upper limits of the 95% confidence interval.
#' @return \code{all.stats}: Complete statistics for model parameters. \code{sd_intra} is the standard deviation
#' due to intraspecific variation. \code{CI_low} and \code{CI_high} are the lower and upper limits
#' of the 95% confidence interval.
#' @author Caterina Penone & Pablo Ariel Martinez
#' @seealso \code{\link[phylolm]{phyloglm}}, \code{\link{sensi_plot}},\code{\link{tree_phylm}}
#' @references
#'
#' Paterno, G. B., Penone, C. Werner, G. D. A.
#' \href{http://doi.wiley.com/10.1111/2041-210X.12990}{sensiPhy:
#' An r-package for sensitivity analysis in phylogenetic
#' comparative methods.} Methods in Ecology and Evolution
#' 2018, 9(6):1461-1467
#'
#' Donoghue, M.J. & Ackerly, D.D. (1996). Phylogenetic Uncertainties and
#' Sensitivity Analyses in Comparative Biology. Philosophical Transactions:
#' Biological Sciences, pp. 1241-1249.
#'
#' Ho, L. S. T. and Ane, C. 2014. "A linear-time algorithm for
#' Gaussian and non-Gaussian trait evolution models". Systematic Biology 63(3):397-408.
#' @examples
#'### Simulating Data:
#'set.seed(6987)
#'mphy = rmtree(150, N = 30)
#'x = rTrait(n=1,phy=mphy[[1]])
#'X = cbind(rep(1,150),x)
#'y = rbinTrait(n=1,phy=mphy[[1]], beta=c(-1,0.5), alpha=.7 ,X=X)
#'dat = data.frame(y, x)
#'# Run sensitivity analysis:
#'tree <- tree_phyglm(y ~ x, data = dat, phy = mphy, n.tree = 30)
#'# summary results:
#'summary(tree)
#'# Visual diagnostics for phylogenetic uncertainty:
#'sensi_plot(tree)
#' @export
tree_phyglm <- function(formula,
data,
phy,
n.tree = 2,
btol = 50,
track = TRUE,
...) {
#Error check
if (!inherits(formula, "formula"))
stop("formula must be class 'formula'")
if (!inherits(data, "data.frame"))
stop("data must be class 'data.frame'")
if (!inherits(phy, "multiPhylo"))
stop("phy must be class 'multiPhylo'")
if (length(phy) < n.tree)
stop("'n.tree' must be smaller (or equal) than the number of trees in the 'multiPhylo' object")
else
#Matching tree and phylogeny using utils.R
datphy <- match_dataphy(formula, data, phy, ...)
full.data <- datphy[[1]]
phy <- datphy[[2]]
# If the class of tree is multiphylo pick n=n.tree random trees
trees <- sample(length(phy), n.tree, replace = F)
#Create the results data.frame
sensi.estimates <-
data.frame(
"n.tree" = numeric(),
"intercept" = numeric(),
"se.intercept" = numeric(),
"pval.intercept" = numeric(),
"estimate" = numeric(),
"se.estimate" = numeric(),
"pval.estimate" = numeric(),
"aic" = numeric(),
"optpar" = numeric()
)
#Model calculation
counter = 1
errors <- NULL
c.data <- list()
if (track == TRUE)
pb <- utils::txtProgressBar(min = 0, max = n.tree, style = 3)
for (j in trees) {
#Match data order to tip order
full.data <- full.data[phy[[j]]$tip.label, ]
#phyloglm model
mod = try(phylolm::phyloglm(
formula,
data = full.data,
phy = phy[[j]],
method = "logistic_MPLE",
btol = btol
),
FALSE)
if (isTRUE(class(mod) == "try-error")) {
error <- j
names(error) <- rownames(c.data$full.data)[j]
errors <- c(errors, error)
next
}
else{
intercept <-
phylolm::summary.phyloglm(mod)$coefficients[[1, 1]]
se.intercept <-
phylolm::summary.phyloglm(mod)$coefficients[[1, 2]]
estimate <-
phylolm::summary.phyloglm(mod)$coefficients[[2, 1]]
se.estimate <-
phylolm::summary.phyloglm(mod)$coefficients[[2, 2]]
pval.intercept <-
phylolm::summary.phyloglm(mod)$coefficients[[1, 4]]
pval.estimate <-
phylolm::summary.phyloglm(mod)$coefficients[[2, 4]]
aic.mod <- mod$aic
n <- mod$n
#d <- mod$d
optpar <- mod$alpha
if (track == TRUE)
utils::setTxtProgressBar(pb, counter)
#write in a table
estim.simu <-
data.frame(
j,
intercept,
se.intercept,
pval.intercept,
estimate,
se.estimate,
pval.estimate,
aic.mod,
optpar,
stringsAsFactors = F
)
sensi.estimates[counter,] <- estim.simu
counter = counter + 1
}
}
if (track == TRUE)
on.exit(close(pb))
#calculate mean and sd for each parameter
#variation due to tree choice
statresults <- data.frame(
min = apply(sensi.estimates, 2, min),
max = apply(sensi.estimates, 2, max),
mean = apply(sensi.estimates, 2, mean),
sd_tree = apply(sensi.estimates, 2, stats::sd)
)[-1,]
statresults$CI_low <-
statresults$mean - qt(0.975, df = n.tree - 1) * statresults$sd_tree / sqrt(n.tree)
statresults$CI_high <-
statresults$mean + qt(0.975, df = n.tree - 1) * statresults$sd_tree / sqrt(n.tree)
res <- list(
call = match.call(),
formula = formula,
data = full.data,
sensi.estimates = sensi.estimates,
N.obs = n,
stats = round(statresults[c(1:6), c(3, 5, 6)], digits = 3),
all.stats = statresults
)
class(res) <- c("sensiTree", "sensiTreeL")
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.