Nothing
em_nhmm <- function(model, inits, init_sd, restarts, lambda,
bound, control, control_restart, control_mstep,
save_all_solutions) {
M <- model$n_symbols
S <- model$n_states
T_ <- model$length_of_sequences
C <- model$n_channels
np_pi <- attr(model, "np_pi")
np_A <- attr(model, "np_A")
np_B <- attr(model, "np_B")
X_pi <- model$X_pi
X_A <- model$X_A
X_B <- model$X_B
icpt_only_pi <- io(X_pi)
icpt_only_A <- io(X_A)
icpt_only_B <- io(X_B)
iv_A <- iv(X_A)
iv_B <- iv(X_B)
tv_A <- tv(X_A)
tv_B <- tv(X_B)
K_pi <- K(X_pi)
K_A <- K(X_A)
K_B <- K(X_B)
Ti <- model$sequence_lengths
obs <- create_obs(model)
all_solutions <- NULL
use_fanhmm <- inherits(model, "fanhmm") && !identical(model$prior_obs, 0L)
if (restarts > 0L) {
.fun <- function(base_init, u) {
pars <- base_init + u
eta_pi <- create_eta_pi_nhmm(pars[seq_len(np_pi)], S, K_pi)
eta_A <- create_eta_A_nhmm(
pars[np_pi + seq_len(np_A)],
S, K_A
)
eta_B <- create_eta_B_nhmm(
pars[np_pi + np_A + seq_len(np_B)], S, M, K_B
)
if (use_fanhmm) {
fit <- Rcpp_EM_LBFGS_fanhmm(
obs, Ti, M, X_pi, X_A, X_B, icpt_only_pi, icpt_only_A, icpt_only_B,
iv_A, iv_B, tv_A, tv_B, eta_pi, eta_A, eta_B,
model$prior_obs, model$W_X_B, lambda,
control_restart$maxeval,
control_restart$ftol_abs, control_restart$ftol_rel,
control_restart$xtol_abs, control_restart$xtol_rel,
control_restart$print_level, control_mstep$maxeval,
control_mstep$ftol_abs, control_mstep$ftol_rel,
control_mstep$xtol_abs, control_mstep$xtol_rel,
control_mstep$print_level, bound
)
} else {
fit <- Rcpp_EM_LBFGS_nhmm(
obs, Ti, M, X_pi, X_A, X_B, icpt_only_pi, icpt_only_A, icpt_only_B,
iv_A, iv_B, tv_A, tv_B, eta_pi, eta_A, eta_B, lambda,
control_restart$maxeval,
control_restart$ftol_abs, control_restart$ftol_rel,
control_restart$xtol_abs, control_restart$xtol_rel,
control_restart$print_level, control_mstep$maxeval,
control_mstep$ftol_abs, control_mstep$ftol_rel,
control_mstep$xtol_abs, control_mstep$xtol_rel,
control_mstep$print_level, bound
)
}
p()
fit
}
p <- progressr::progressor(along = seq_len(restarts))
original_options <- options(future.globals.maxSize = Inf)
on.exit(options(original_options))
base_init <- unlist(create_initial_values(inits, model, init_sd = 0))
u <- t(
stats::qnorm(
lhs::maximinLHS(restarts, length(unlist(base_init))), sd = init_sd
)
)
fit <- future.apply::future_lapply(
seq_len(restarts), \(i) .fun(base_init, u[, i]), future.seed = TRUE
)
return_codes <- unlist(lapply(fit, "[[", "return_code"))
if (all(return_codes < 0)) {
warning_(
c("All restarts terminated due to error.",
"Error of first restart: ", return_msg(return_codes[1]))
)
optimum <- fit[[1]]
} else {
logliks <- unlist(lapply(fit, "[[", "logLik"))
optimum <- fit[[which.max(logliks)]]
}
init <- create_initial_values(
optimum[c("eta_pi", "eta_A", "eta_B")],
model,
init_sd = 0
)
if (save_all_solutions) {
all_solutions <- fit
}
} else {
init <- create_initial_values(inits, model, init_sd)
}
if (use_fanhmm) {
fit <- Rcpp_EM_LBFGS_fanhmm(
obs, Ti, M, X_pi, X_A, X_B, icpt_only_pi, icpt_only_A, icpt_only_B,
iv_A, iv_B, tv_A, tv_B, init$eta_pi, init$eta_A, init$eta_B,
model$prior_obs, model$W_X_B, lambda,
control$maxeval, control$ftol_abs, control$ftol_rel,
control$xtol_abs, control$xtol_rel, control$print_level,
control_mstep$maxeval, control_mstep$ftol_abs, control_mstep$ftol_rel,
control_mstep$xtol_abs, control_mstep$xtol_rel,
control_mstep$print_level, bound
)
} else {
fit <- Rcpp_EM_LBFGS_nhmm(
obs, Ti, M, X_pi, X_A, X_B, icpt_only_pi, icpt_only_A, icpt_only_B,
iv_A, iv_B, tv_A, tv_B, init$eta_pi, init$eta_A, init$eta_B, lambda,
control$maxeval, control$ftol_abs, control$ftol_rel,
control$xtol_abs, control$xtol_rel, control$print_level,
control_mstep$maxeval, control_mstep$ftol_abs, control_mstep$ftol_rel,
control_mstep$xtol_abs, control_mstep$xtol_rel,
control_mstep$print_level, bound
)
}
if (fit$return_code < 0) {
warning_(
paste("Optimization terminated due to error:", return_msg(fit$return_code))
)
}
model$etas$eta_pi <- fit$eta_pi
model$gammas$gamma_pi <- fit$gamma_pi
model$etas$eta_A <- fit$eta_A
model$gammas$gamma_A <- fit$gamma_A
model$etas$eta_B <- drop(fit$eta_B)
model$gammas$gamma_B <- drop(fit$gamma_B)
model$estimation_results <- list(
loglik = fit$logLik,
iterations = fit$iterations,
return_code = fit$return_code,
logliks_of_restarts = if(restarts > 0L) logliks else NULL,
return_codes_of_restarts = if(restarts > 0L) return_codes else NULL,
all_solutions = all_solutions,
f_rel_change = fit$relative_f_change,
f_abs_change = fit$absolute_f_change,
x_rel_change = fit$relative_x_change,
x_abs_change = fit$absolute_x_change,
lambda = lambda,
bound = bound,
method = "EM"
)
model
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.