Nothing
################################################################################
# #
# R internal functions for the sfaR package #
# #
################################################################################
#------------------------------------------------------------------------------#
# Data: Cross sectional data & Pooled data #
# Model: Standard Stochastic Frontier Analysis #
# Convolution: gamma - normal #
#------------------------------------------------------------------------------#
# Log-likelihood ----------
#' log-likelihood for gamma-normal distribution
#' @param parm all parameters to be estimated
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @param N number of observations
#' @param FiMat matrix of random draws
#' @noRd
cgammanormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S, N, FiMat, wHvar) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
P <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
mui <- -S * epsilon - exp(Wv)/sqrt(exp(Wu))
Hi <- numeric(N)
for (i in seq_len(N)) {
Hi[i] <- mean((mui[i] + sqrt(exp(Wv[i])) * qnorm(FiMat[i,
] + (1 - FiMat[i, ]) * pnorm(-mui[i]/sqrt(exp(Wv[i])))))^(P -
1))
}
if (P <= 0) {
return(NA)
}
ll <- -1/2 * P * Wu - log(gamma(P)) + exp(Wv)/(2 * exp(Wu)) +
S * epsilon/sqrt(exp(Wu)) + pnorm(-S * epsilon/sqrt(exp(Wv)) -
sqrt(exp(Wv)/exp(Wu)), log.p = TRUE) + log(Hi)
return(ll * wHvar)
}
# starting value for the log-likelihood ----------
#' starting values for gamma-normal distribution
#' @param olsObj OLS object
#' @param epsiRes residuals from OLS
#' @param S integer for cost/prod estimation
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @noRd
cstgammanorm <- function(olsObj, epsiRes, S, nuZUvar, uHvar,
nvZVvar, vHvar) {
m2 <- sum(epsiRes^2)/length(epsiRes)
m3 <- sum(epsiRes^3)/length(epsiRes)
if (S * m3 > 0) {
varu <- (abs((-S * m3/2)))^(2/3)
} else {
varu <- (-S * m3/2)^(2/3)
}
if (m2 < varu) {
varv <- abs(m2 - varu)
} else {
varv <- m2 - varu
}
dep_u <- 1/2 * log((epsiRes^2 - varv)^2)
dep_v <- 1/2 * log((epsiRes^2 - varu)^2)
reg_hetu <- if (nuZUvar == 1) {
lm(log(varu) ~ 1)
} else {
lm(dep_u ~ ., data = as.data.frame(uHvar[, 2:nuZUvar,
drop = FALSE]))
}
if (any(is.na(reg_hetu$coefficients))) {
stop("At least one of the OLS coefficients of 'uhet' is NA: ",
paste(colnames(uHvar)[is.na(reg_hetu$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
}
reg_hetv <- if (nvZVvar == 1) {
lm(log(varv) ~ 1)
} else {
lm(dep_v ~ ., data = as.data.frame(vHvar[, 2:nvZVvar,
drop = FALSE]))
}
if (any(is.na(reg_hetv$coefficients))) {
stop("at least one of the OLS coefficients of 'vhet' is NA: ",
paste(colnames(vHvar)[is.na(reg_hetv$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
}
delta <- coefficients(reg_hetu)
names(delta) <- paste0("Zu_", colnames(uHvar))
phi <- coefficients(reg_hetv)
names(phi) <- paste0("Zv_", colnames(vHvar))
if (names(olsObj)[1] == "(Intercept)") {
beta <- c(olsObj[1] + S * sqrt(varu), olsObj[-1])
} else {
beta <- olsObj
}
return(c(beta, delta, phi, P = 1))
}
# Gradient of the likelihood function ----------
#' gradient for gamma-normal distribution
#' @param parm all parameters to be estimated
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @param N number of observations
#' @param FiMat matrix of random draws
#' @noRd
cgradgammanormlike <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S, N, FiMat, wHvar) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
P <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
wuwv <- sqrt(exp(Wv)/exp(Wu))
dwuwv <- dnorm(-(S * (epsilon)/exp(Wv/2) + wuwv))
pwuwv <- pnorm(-(S * (epsilon)/exp(Wv/2) + wuwv))
depsi <- dnorm((exp(Wv)/exp(Wu/2) + S * (epsilon))/exp(Wv/2))
pepsi <- pnorm((exp(Wv)/exp(Wu/2) + S * (epsilon))/exp(Wv/2))
sigx1 <- (exp(Wv)/exp(Wu/2) + S * (epsilon))
sigx2 <- (dwuwv/(exp(Wv/2) * pwuwv) - 1/exp(Wu/2))
sigx3 <- (dwuwv/(exp(Wu) * pwuwv * wuwv))
sigx4 <- (0.5 * sigx3 - 2 * (exp(Wu)/(2 * exp(Wu))^2)) *
exp(Wv)
sigx5 <- (sigx4 - (0.5 * (S * (epsilon)/exp(Wu/2)) + 0.5 *
P))
sigx6 <- (exp(Wv)/(2 * exp(Wu)) - (0.5 * (exp(Wv)/(exp(Wu) *
wuwv)) - 0.5 * (S * (epsilon)/exp(Wv/2))) * dwuwv/pwuwv)
F1 <- sweep((1 - FiMat), MARGIN = 1, STATS = pepsi, FUN = "*") +
FiMat
dqF1 <- dnorm(qnorm(F1))
F2 <- sweep(qnorm(F1), MARGIN = 1, STATS = exp(Wv/2), FUN = "*")
F3 <- sweep(F2, MARGIN = 1, STATS = sigx1, FUN = "-")
sumF3 <- apply(F3^(P - 1), 1, sum)
F4 <- sweep((1 - FiMat)/dqF1, MARGIN = 1, STATS = depsi,
FUN = "*")
F5 <- sweep((0.5 - 0.5 * (F4)) * (F3)^(P - 2) * (P - 1),
MARGIN = 1, STATS = exp(Wv)/exp(Wu/2), FUN = "*")
F6 <- sweep(F4, MARGIN = 1, STATS = exp(Wv)/exp(Wu/2) - 0.5 *
sigx1, FUN = "*") + 0.5 * (F2)
F7 <- sweep(F6, MARGIN = 1, STATS = exp(Wv)/exp(Wu/2), FUN = "-") *
F3^(P - 2) * (P - 1)
gx <- matrix(nrow = N, ncol = nXvar)
for (k in seq_len(nXvar)) {
gx[, k] <- apply(sweep(S * (1 - F4) * F3^(P - 2) * (P -
1), MARGIN = 1, STATS = Xvar[, k], FUN = "*"), 1,
sum)/sumF3
}
gx <- sweep(Xvar, MARGIN = 1, STATS = S * sigx2, FUN = "*") +
gx
gu <- matrix(nrow = N, ncol = nuZUvar)
for (k in seq_len(nuZUvar)) {
gu[, k] <- apply(sweep(F5, MARGIN = 1, STATS = uHvar[,
k], FUN = "*"), 1, sum)/sumF3
}
gu <- sweep(uHvar, MARGIN = 1, STATS = sigx5, FUN = "*") +
gu
gv <- matrix(nrow = N, ncol = nvZVvar)
for (k in seq_len(nvZVvar)) {
gv[, k] <- apply(sweep(F7, MARGIN = 1, STATS = vHvar[,
k], FUN = "*"), 1, sum)/sumF3
}
gv <- sweep(vHvar, MARGIN = 1, STATS = sigx6, FUN = "*") +
gv
gradll <- cbind(gx, gu, gv, (apply((F3)^(P - 1) * log(F3),
1, sum)/sumF3 - (0.5 * (Wu) + digamma(P))))
return(sweep(gradll, MARGIN = 1, STATS = wHvar, FUN = "*"))
}
# Hessian of the likelihood function ----------
#' hessian for gamma-normal distribution
#' @param parm all parameters to be estimated
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @param N number of observations
#' @param FiMat matrix of random draws
#' @noRd
chessgammanormlike <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S, N, FiMat, wHvar) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
P <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
ewv <- exp(Wv)
ewu <- exp(Wu)
ewv_h <- exp(Wv/2)
ewu_h <- exp(Wu/2)
wuwv <- sqrt(ewv/ewu)
dwuwv <- dnorm(-(S * (epsilon)/ewv_h + wuwv))
pwuwv <- pnorm(-(S * (epsilon)/ewv_h + wuwv))
depsi <- dnorm((ewv/ewu_h + S * (epsilon))/ewv_h)
pepsi <- pnorm((ewv/ewu_h + S * (epsilon))/ewv_h)
sigx1 <- (ewv/ewu_h + S * (epsilon))
Q <- dim(FiMat)[2]
F1 <- sweep((1 - FiMat), MARGIN = 1, STATS = pepsi, FUN = "*") +
FiMat
qF1 <- qnorm(F1)
dqF1 <- dnorm(qF1)
F2 <- sweep(qF1, MARGIN = 1, STATS = ewv_h, FUN = "*")
F3 <- sweep(F2, MARGIN = 1, STATS = sigx1, FUN = "-")
sumF3 <- apply(F3^(P - 1), 1, sum)
F4 <- sweep((1 - FiMat)/dqF1, MARGIN = 1, STATS = depsi,
FUN = "*")
F5 <- sweep((0.5 - 0.5 * (F4)) * (F3)^(P - 2) * (P - 1),
MARGIN = 1, STATS = ewv/ewu_h, FUN = "*")
F6 <- sweep(F4, MARGIN = 1, STATS = ewv/ewu_h - 0.5 * sigx1,
FUN = "*") + 0.5 * (F2)
F7 <- sweep(F6, MARGIN = 1, STATS = ewv/ewu_h, FUN = "-") *
F3^(P - 2) * (P - 1)
F8 <- sweep((1 - FiMat) * dqF1 * qF1/dqF1^2, MARGIN = 1,
STATS = depsi, FUN = "*")
F9 <- sweep((-F8), MARGIN = 1, STATS = sigx1/ewv_h, FUN = "+")
F10 <- sweep((1 - FiMat) * (F3)^(P - 2)/(dqF1), MARGIN = 1,
STATS = depsi/ewv_h, FUN = "*")
F11 <- ((F3)^(P - 2) + (F3)^(P - 2) * log(F3) * (P - 1))
F12 <- sweep((F6), MARGIN = 1, STATS = ewv/ewu_h, FUN = "-")
F13 <- sweep(F9 * (1 - FiMat) * (F3)^(P - 2)/(dqF1), MARGIN = 1,
STATS = depsi * (ewv/ewu_h - 0.5 * sigx1)/ewv_h, FUN = "*")
F14 <- sweep((-0.5 * (F8)), MARGIN = 1, STATS = 0.5 * (sigx1/ewv_h),
FUN = "+")
F15 <- sweep(((0.5 - 0.5 * F4)^2 * (F3)^(P - 3) * (P - 2) -
0.5 * (F14 * F10)), MARGIN = 1, STATS = ewv/ewu_h, FUN = "*")
F16 <- sweep(F14, MARGIN = 1, STATS = (ewv/ewu_h - 0.5 *
sigx1)/ewv_h, FUN = "*")
F17 <- sweep((F8), MARGIN = 1, STATS = sigx1/ewv_h, FUN = "-")
F18 <- sweep(F17, MARGIN = 1, STATS = (ewv/ewu_h - 0.5 *
sigx1)^2/ewv_h, FUN = "*")
F19 <- sweep((F18), MARGIN = 1, STATS = 0.5 * (ewv/ewu_h),
FUN = "+")
F20 <- sweep(0.5 * (F6), MARGIN = 1, STATS = ewv/ewu_h, FUN = "-")
sigx7 <- (S * (epsilon)/ewv_h + wuwv)
sumF3H <- apply((F3)^(P - 1) * log(F3), 1, sum)
X1 <- matrix(nrow = N, ncol = nXvar)
X2 <- matrix(nrow = N, ncol = nXvar)
X3 <- matrix(nrow = N, ncol = nXvar)
for (k in seq_len(nXvar)) {
X1[, k] <- apply(sweep(S * (1 - F4) * F3^(P - 2) * (P -
1), MARGIN = 1, STATS = Xvar[, k], FUN = "*"), 1,
sum)/sumF3
X2[, k] <- apply(sweep(S * (1 - F4) * (F3)^(P - 2) *
(P - 1), MARGIN = 1, STATS = Xvar[, k], FUN = "*"),
1, sum)/sumF3
X3[, k] <- apply(sweep(S * F11 * (1 - F4), MARGIN = 1,
STATS = Xvar[, k], FUN = "*"), 1, sum)/sumF3
}
ZU1 <- matrix(nrow = N, ncol = nuZUvar)
ZU2 <- matrix(nrow = N, ncol = nuZUvar)
for (k in seq_len(nuZUvar)) {
ZU1[, k] <- apply(sweep(F5, MARGIN = 1, STATS = uHvar[,
k], FUN = "*"), 1, sum)/sumF3
ZU2[, k] <- apply(sweep(F11 * (0.5 - 0.5 * F4), MARGIN = 1,
STATS = uHvar[, k] * ewv/ewu_h, FUN = "*"), 1, sum)/sumF3
}
ZV1 <- matrix(nrow = N, ncol = nvZVvar)
ZV2 <- matrix(nrow = N, ncol = nvZVvar)
for (k in seq_len(nvZVvar)) {
ZV1[, k] <- apply(sweep(F7, MARGIN = 1, STATS = vHvar[,
k], FUN = "*"), 1, sum)/sumF3
ZV2[, k] <- apply(sweep(F12 * F11, MARGIN = 1, STATS = vHvar[,
k], FUN = "*"), 1, sum)/sumF3
}
HX1 <- list()
HXU1 <- list()
HXV1 <- list()
HU1 <- list()
HUV1 <- list()
HV1 <- list()
for (r in seq_len(Q)) {
HX1[[r]] <- crossprod(sweep(Xvar, MARGIN = 1, STATS = wHvar *
((1 - F4)^2 * (F3)^(P - 3) * (P - 2) - F9 * F10)[,
r] * (P - 1)/sumF3, FUN = "*"), Xvar)
HXU1[[r]] <- crossprod(sweep(Xvar, MARGIN = 1, STATS = S *
wHvar * ((0.5 - 0.5 * F4) * (1 - F4) * (F3)^(P -
3) * (P - 2) - 0.5 * (F9 * F10))[, r] * ewv * (P -
1)/ewu_h/sumF3, FUN = "*"), uHvar)
HXV1[[r]] <- crossprod(sweep(Xvar, MARGIN = 1, STATS = S *
wHvar * (F12 * (1 - F4) * (F3)^(P - 3) * (P - 2) +
F13)[, r] * (P - 1)/sumF3, FUN = "*"), vHvar)
HU1[[r]] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = wHvar *
(F15 - 0.5 * ((0.5 - 0.5 * F4) * (F3)^(P - 2)))[,
r] * ewv * (P - 1)/ewu_h/sumF3, FUN = "*"), uHvar)
HUV1[[r]] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = wHvar *
(((F16 - 0.5) * F4 + 0.5) * (F3)^(P - 2) + F12 *
(0.5 - 0.5 * F4) * (F3)^(P - 3) * (P - 2))[,
r] * ewv * (P - 1)/ewu_h/sumF3, FUN = "*"), vHvar)
HV1[[r]] <- crossprod(sweep(vHvar, MARGIN = 1, STATS = wHvar *
((F19 * F4 + F20) * (F3)^(P - 2) + F12^2 * (F3)^(P -
3) * (P - 2))[, r] * (P - 1)/sumF3, FUN = "*"),
vHvar)
}
hessll <- matrix(nrow = nXvar + nuZUvar + nvZVvar + 1, ncol = nXvar +
nuZUvar + nvZVvar + 1)
hessll[1:nXvar, 1:nXvar] <- Reduce("+", HX1) - crossprod(sweep(X2,
MARGIN = 1, STATS = wHvar/sumF3^2, FUN = "*"), X2) +
crossprod(sweep(Xvar, MARGIN = 1, STATS = wHvar * (sigx7/(ewv_h^2 *
pwuwv) - dwuwv/(ewv_h * pwuwv)^2) * dwuwv, FUN = "*"),
Xvar)
hessll[1:nXvar, (nXvar + 1):(nXvar + nuZUvar)] <- Reduce("+",
HXU1) - crossprod(sweep(X2, MARGIN = 1, STATS = wHvar/sumF3,
FUN = "*"), ZU1) + crossprod(sweep(Xvar, MARGIN = 1,
STATS = S * wHvar * (0.5 * ((sigx7/(ewu * pwuwv * wuwv) -
dwuwv * ewu * wuwv/(ewu * pwuwv * wuwv)^2) * dwuwv *
ewv/ewv_h) + 0.5/ewu_h), FUN = "*"), uHvar)
hessll[1:nXvar, (nXvar + nuZUvar + 1):(nXvar + nuZUvar +
nvZVvar)] <- Reduce("+", HXV1) - crossprod(sweep(X2,
MARGIN = 1, STATS = wHvar/sumF3, FUN = "*"), ZV1) - crossprod(sweep(Xvar,
MARGIN = 1, STATS = S * wHvar * ((0.5 * (ewv/(ewu * wuwv)) -
0.5 * (S * (epsilon)/ewv_h)) * (S * (epsilon)/ewv_h +
wuwv - dwuwv/pwuwv) + 0.5) * dwuwv/(ewv_h * pwuwv),
FUN = "*"), vHvar)
hessll[1:nXvar, nXvar + nuZUvar + nvZVvar + 1] <- colSums(sweep(X3,
MARGIN = 1, STATS = wHvar, FUN = "*") - sweep(X1, MARGIN = 1,
STATS = wHvar * sumF3H/sumF3, FUN = "*"))
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + 1):(nXvar +
nuZUvar)] <- Reduce("+", HU1) - crossprod(sweep(ZU1,
MARGIN = 1, STATS = wHvar/sumF3, FUN = "*"), ZU1) + crossprod(sweep(uHvar,
MARGIN = 1, STATS = wHvar * ((0.5 * ((0.5 * (sigx7/(ewu *
pwuwv)) - ((0.5 * (dwuwv * ewv/wuwv) + ewu * pwuwv) *
wuwv - 0.5 * (ewv * pwuwv/wuwv))/(ewu * pwuwv * wuwv)^2) *
dwuwv) - 2 * ((1 - 8 * (ewu^2/(2 * ewu)^2)) * ewu/(2 *
ewu)^2)) * ewv + 0.25 * (S * (epsilon)/ewu_h)), FUN = "*"),
uHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + nuZUvar +
1):(nXvar + nuZUvar + nvZVvar)] <- Reduce("+", HUV1) -
crossprod(sweep(ZU1, MARGIN = 1, STATS = wHvar/sumF3,
FUN = "*"), ZV1) - crossprod(sweep(uHvar, MARGIN = 1,
STATS = wHvar * (((0.5 * (ewv/(ewu * wuwv)) - 0.5 * (S *
(epsilon)/ewv_h)) * (0.5 * sigx7 - 0.5 * (dwuwv/pwuwv))/(ewu *
wuwv) - 0.5 * ((ewu * wuwv - 0.5 * (ewv/wuwv))/(ewu *
wuwv)^2)) * dwuwv/pwuwv + 2 * (ewu/(2 * ewu)^2)) *
ewv, FUN = "*"), vHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), nXvar + nuZUvar + nvZVvar +
1] <- colSums(sweep(ZU2, MARGIN = 1, STATS = wHvar, FUN = "*") -
sweep(ZU1, MARGIN = 1, STATS = wHvar * sumF3H/sumF3,
FUN = "*") - 0.5 * sweep(uHvar, MARGIN = 1, STATS = wHvar,
FUN = "*"))
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar),
(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)] <- Reduce("+",
HV1) - crossprod(sweep(ZV1, MARGIN = 1, STATS = wHvar/sumF3,
FUN = "*"), ZV1) + crossprod(sweep(vHvar, MARGIN = 1,
STATS = wHvar * (ewv/(2 * ewu) - ((0.5 * (ewv/(ewu *
wuwv)) - 0.5 * (S * (epsilon)/ewv_h))^2 * (dwuwv/pwuwv -
sigx7) + 0.25 * (S * (epsilon)/ewv_h) + 0.5 * ((1/ewu -
0.5 * (ewv/(ewu * wuwv)^2)) * ewv/wuwv)) * dwuwv/pwuwv),
FUN = "*"), vHvar)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar),
nXvar + nuZUvar + nvZVvar + 1] <- colSums(sweep(ZV2,
MARGIN = 1, STATS = wHvar, FUN = "*") - sweep(ZV1, MARGIN = 1,
STATS = wHvar * sumF3H/sumF3, FUN = "*"))
hessll[nXvar + nuZUvar + nvZVvar + 1, nXvar + nuZUvar + nvZVvar +
1] <- sum(((apply((F3)^(P - 1) * log(F3)^2, 1, sum) -
sumF3H^2/sumF3)/sumF3 - trigamma(P)) * wHvar)
hessll[lower.tri(hessll)] <- t(hessll)[lower.tri(hessll)]
# hessll <- (hessll + (hessll))/2
return(hessll)
}
# Optimization using different algorithms ----------
#' optimizations solve for gamma-normal distribution
#' @param start starting value for optimization
#' @param olsParam OLS coefficients
#' @param dataTable dataframe contains id of observations
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @param N number of observations
#' @param FiMat matrix of random draws
#' @param method algorithm for solver
#' @param printInfo logical print info during optimization
#' @param itermax maximum iteration
#' @param stepmax stepmax for ucminf
#' @param tol parameter tolerance
#' @param gradtol gradient tolerance
#' @param hessianType how hessian is computed
#' @param qac qac option for maxLik
#' @noRd
gammanormAlgOpt <- function(start, olsParam, dataTable, S, nXvar,
N, FiMat, uHvar, nuZUvar, vHvar, nvZVvar, Yvar, Xvar, wHvar,
method, printInfo, itermax, stepmax, tol, gradtol, hessianType,
qac) {
startVal <- if (!is.null(start))
start else cstgammanorm(olsObj = olsParam, epsiRes = dataTable[["olsResiduals"]],
S = S, uHvar = uHvar, nuZUvar = nuZUvar, vHvar = vHvar,
nvZVvar = nvZVvar)
startLoglik <- sum(cgammanormlike(startVal, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat, wHvar = wHvar))
if (method %in% c("bfgs", "bhhh", "nr", "nm", "cg", "sann")) {
maxRoutine <- switch(method, bfgs = function(...) maxLik::maxBFGS(...),
bhhh = function(...) maxLik::maxBHHH(...), nr = function(...) maxLik::maxNR(...),
nm = function(...) maxLik::maxNM(...), cg = function(...) maxLik::maxCG(...),
sann = function(...) maxLik::maxSANN(...))
method <- "maxLikAlgo"
}
mleObj <- switch(method, ucminf = ucminf::ucminf(par = startVal,
fn = function(parm) -sum(cgammanormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat, wHvar = wHvar)), gr = function(parm) -colSums(cgradgammanormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)), hessian = 0,
control = list(trace = if (printInfo) 1 else 0, maxeval = itermax,
stepmax = stepmax, xtol = tol, grtol = gradtol)),
maxLikAlgo = maxRoutine(fn = cgammanormlike, grad = cgradgammanormlike,
hess = chessgammanormlike, start = startVal, finalHessian = if (hessianType ==
2) "bhhh" else TRUE, control = list(printLevel = if (printInfo) 2 else 0,
iterlim = itermax, reltol = tol, tol = tol, qac = qac),
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar), sr1 = trustOptim::trust.optim(x = startVal,
fn = function(parm) -sum(cgammanormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S,
N = N, FiMat = FiMat, wHvar = wHvar)), gr = function(parm) -colSums(cgradgammanormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)),
method = "SR1", control = list(maxit = itermax, cgtol = gradtol,
stop.trust.radius = tol, prec = tol, report.level = if (printInfo) 2 else 0,
report.precision = 1L)), sparse = trustOptim::trust.optim(x = startVal,
fn = function(parm) -sum(cgammanormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S,
N = N, FiMat = FiMat, wHvar = wHvar)), gr = function(parm) -colSums(cgradgammanormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)),
hs = function(parm) as(-chessgammanormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar),
"dgCMatrix"), method = "Sparse", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L,
preconditioner = 1L)), mla = marqLevAlg::mla(b = startVal,
fn = function(parm) -sum(cgammanormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S,
N = N, FiMat = FiMat, wHvar = wHvar)), gr = function(parm) -colSums(cgradgammanormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)),
hess = function(parm) -chessgammanormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S,
N = N, FiMat = FiMat, wHvar = wHvar), print.info = printInfo,
maxiter = itermax, epsa = gradtol, epsb = gradtol),
nlminb = nlminb(start = startVal, objective = function(parm) -sum(cgammanormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)), gradient = function(parm) -colSums(cgradgammanormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)), hessian = function(parm) -chessgammanormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar), control = list(iter.max = itermax,
trace = if (printInfo) 1 else 0, eval.max = itermax,
rel.tol = tol, x.tol = tol)))
if (method %in% c("ucminf", "nlminb")) {
mleObj$gradient <- colSums(cgradgammanormlike(mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar))
}
mlParam <- if (method %in% c("ucminf", "nlminb")) {
mleObj$par
} else {
if (method == "maxLikAlgo") {
mleObj$estimate
} else {
if (method %in% c("sr1", "sparse")) {
mleObj$solution
} else {
if (method == "mla") {
mleObj$b
}
}
}
}
if (hessianType != 2) {
if (method %in% c("ucminf", "nlminb"))
mleObj$hessian <- chessgammanormlike(parm = mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)
if (method == "sr1")
mleObj$hessian <- chessgammanormlike(parm = mleObj$solution,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)
}
mleObj$logL_OBS <- cgammanormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat, wHvar = wHvar)
mleObj$gradL_OBS <- cgradgammanormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat, wHvar = wHvar)
return(list(startVal = startVal, startLoglik = startLoglik,
mleObj = mleObj, mlParam = mlParam))
}
# Conditional efficiencies estimation ----------
#' efficiencies for gamma-normal distribution
#' @param object object of class sfacross
#' @param level level for confidence interval
#' @noRd
cgammanormeff <- function(object, level) {
beta <- object$mlParam[1:(object$nXvar)]
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nuZUvar + 1):(object$nXvar +
object$nuZUvar + object$nvZVvar)]
P <- object$mlParam[object$nXvar + object$nuZUvar + object$nvZVvar +
1]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta), t(Xvar)))
mui <- -object$S * epsilon - exp(Wv)/sqrt(exp(Wu))
Hi1 <- numeric(object$Nobs)
Hi2 <- numeric(object$Nobs)
for (i in seq_len(object$Nobs)) {
Hi1[i] <- mean((mui[i] + sqrt(exp(Wv[i])) * qnorm(object$FiMat[i,
] + (1 - object$FiMat[i, ]) * pnorm(-mui[i]/sqrt(exp(Wv[i])))))^(P))
Hi2[i] <- mean((mui[i] + sqrt(exp(Wv[i])) * qnorm(object$FiMat[i,
] + (1 - object$FiMat[i, ]) * pnorm(-mui[i]/sqrt(exp(Wv[i])))))^(P -
1))
}
u <- Hi1/Hi2
if (object$logDepVar == TRUE) {
teJLMS <- exp(-u)
mui_Gi <- -object$S * epsilon - exp(Wv)/sqrt(exp(Wu)) -
exp(Wv)
mui_Ki <- -object$S * epsilon - exp(Wv)/sqrt(exp(Wu)) +
exp(Wv)
Gi <- numeric(object$Nobs)
Ki <- numeric(object$Nobs)
for (i in seq_len(object$Nobs)) {
Gi[i] <- mean((mui_Gi[i] + sqrt(exp(Wv[i])) * qnorm(object$FiMat[i,
] + (1 - object$FiMat[i, ]) * pnorm(-mui_Gi[i]/sqrt(exp(Wv[i])))))^(P -
1))
Ki[i] <- mean((mui_Ki[i] + sqrt(exp(Wv[i])) * qnorm(object$FiMat[i,
] + (1 - object$FiMat[i, ]) * pnorm(-mui_Ki[i]/sqrt(exp(Wv[i])))))^(P -
1))
}
teBC <- exp(exp(Wv)/exp(Wu/2) + object$S * epsilon +
exp(Wv)/2) * pnorm(-exp(Wv/2 - Wu/2) - object$S *
epsilon/exp(Wv/2) - exp(Wv/2)) * Gi/(pnorm(-exp(Wv/2 -
Wu/2) - object$S * epsilon/exp(Wv/2)) * Hi2)
teBC_reciprocal <- exp(-exp(Wv)/exp(Wu/2) - object$S *
epsilon + exp(Wv)/2) * pnorm(-exp(Wv/2 - Wu/2) -
object$S * epsilon/exp(Wv/2) + exp(Wv/2)) * Ki/(pnorm(-exp(Wv/2 -
Wu/2) - object$S * epsilon/exp(Wv/2)) * Hi2)
res <- data.frame(u = u, teJLMS = teJLMS, teBC = teBC,
teBC_reciprocal = teBC_reciprocal)
} else {
res <- data.frame(u = u)
}
return(res)
}
# Marginal effects on inefficiencies ----------
#' marginal impact on efficiencies for gamma-normal distribution
#' @param object object of class sfacross
#' @noRd
cmarggammanorm_Eu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
P <- object$mlParam[object$nXvar + object$nuZUvar + object$nvZVvar +
1]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar], nrow = 1),
matrix(P/2 * exp(Wu/2), ncol = 1))
colnames(margEff) <- paste0("Eu_", colnames(uHvar)[-1])
return(data.frame(margEff))
}
cmarggammanorm_Vu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
P <- object$mlParam[object$nXvar + object$nuZUvar + object$nvZVvar +
1]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar], nrow = 1),
matrix(P * exp(Wu), ncol = 1))
colnames(margEff) <- paste0("Vu_", colnames(uHvar)[-1])
return(data.frame(margEff))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.