Nothing
################################################################################
# #
# R internal functions for the sfaR package #
# #
################################################################################
#------------------------------------------------------------------------------#
# Data: Cross sectional data & Pooled data #
# Model: Standard Stochastic Frontier Analysis #
# Convolution: uniform - normal #
#------------------------------------------------------------------------------#
# Log-likelihood ----------
#' log-likelihood for uniform-normal distribution
#' @param parm all parameters to be estimated
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @noRd
cuninormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S, wHvar) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
ll <- (-Wu/2 - 1/2 * log(12) + log(pnorm((exp(Wu/2) * sqrt(12) +
S * epsilon)/exp(Wv/2)) - pnorm(S * epsilon/exp(Wv/2))))
return(ll * wHvar)
}
# starting value for the log-likelihood ----------
#' starting values for uniform-normal distribution
#' @param olsObj OLS object
#' @param epsiRes residuals from OLS
#' @param S integer for cost/prod estimation
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @noRd
cstuninorm <- function(olsObj, epsiRes, S, nuZUvar, uHvar, nvZVvar,
vHvar) {
m2 <- sum(epsiRes^2)/length(epsiRes)
m4 <- sum(epsiRes^4)/length(epsiRes)
if ((m2^2 - m4) < 0) {
theta <- (abs(120 * (3 * m2^2 - m4)))^(1/4)
varu <- theta^2/12
} else {
theta <- (120 * (3 * m2^2 - m4))^(1/4)
varu <- theta^2/12
}
if ((m2 - varu) < 0) {
varv <- abs(m2 - varu)
} else {
varv <- m2 - varu
}
dep_u <- 1/2 * log((epsiRes^2 - varv)^2)
dep_v <- 1/2 * log((epsiRes^2 - varu)^2)
reg_hetu <- if (nuZUvar == 1) {
lm(log(varu) ~ 1)
} else {
lm(dep_u ~ ., data = as.data.frame(uHvar[, 2:nuZUvar,
drop = FALSE]))
}
if (any(is.na(reg_hetu$coefficients)))
stop("At least one of the OLS coefficients of 'uhet' is NA: ",
paste(colnames(uHvar)[is.na(reg_hetu$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
reg_hetv <- if (nvZVvar == 1) {
lm(log(varv) ~ 1)
} else {
lm(dep_v ~ ., data = as.data.frame(vHvar[, 2:nvZVvar,
drop = FALSE]))
}
if (any(is.na(reg_hetv$coefficients)))
stop("at least one of the OLS coefficients of 'vhet' is NA: ",
paste(colnames(vHvar)[is.na(reg_hetv$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
delta <- coefficients(reg_hetu)
names(delta) <- paste0("Zu_", colnames(uHvar))
phi <- coefficients(reg_hetv)
names(phi) <- paste0("Zv_", colnames(vHvar))
if (names(olsObj)[1] == "(Intercept)") {
beta <- c(olsObj[1] + S * theta/2, olsObj[-1])
} else {
beta <- olsObj
}
return(c(beta, delta, phi))
}
# Gradient of the likelihood function ----------
#' gradient for uniform-normal distribution
#' @param parm all parameters to be estimated
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @noRd
cgraduninormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S, wHvar) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
ewv_h <- exp(Wv/2)
ewu_h <- exp(Wu/2)
epsiv <- S * (epsilon)/ewv_h
epsiu <- (sqrt(12) * ewu_h + S * (epsilon))
epsiuv <- epsiu/ewv_h
depsiv <- dnorm(epsiv)
depsiuv <- dnorm(epsiuv)
pepsiv <- pnorm(epsiv)
pepsiuv <- pnorm(epsiuv)
sigx1 <- (0.5 * (S * depsiv * (epsilon)) - 0.5 * (epsiu *
depsiuv))
sigx2 <- (depsiv - depsiuv)
sigx3 <- (pepsiuv - pepsiv)
sigx4 <- (ewv_h * sigx3)
depsiuvx2 <- depsiuv * ewu_h
gradll <- (cbind(sweep(Xvar, MARGIN = 1, STATS = S * sigx2/sigx4,
FUN = "*"), sweep(uHvar, MARGIN = 1, STATS = (sqrt(12)/2 *
(depsiuvx2/sigx4) - 0.5), FUN = "*"), sweep(vHvar, MARGIN = 1,
STATS = sigx1/sigx4, FUN = "*")))
return(sweep(gradll, MARGIN = 1, STATS = wHvar, FUN = "*"))
}
# Hessian of the likelihood function ----------
#' hessian for uniform-normal distribution
#' @param parm all parameters to be estimated
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @noRd
chessuninormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S, wHvar) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
ewv_h <- exp(Wv/2)
ewu_h <- exp(Wu/2)
epsiv <- S * (epsilon)/ewv_h
epsiu <- (sqrt(12) * ewu_h + S * (epsilon))
epsiuv <- epsiu/ewv_h
depsiv <- dnorm(epsiv)
depsiuv <- dnorm(epsiuv)
pepsiv <- pnorm(epsiv)
pepsiuv <- pnorm(epsiuv)
sigx1 <- (0.5 * (S * depsiv * (epsilon)) - 0.5 * (epsiu *
depsiuv))
sigx2 <- (depsiv - depsiuv)
sigx3 <- (pepsiuv - pepsiv)
sigx4 <- (ewv_h * sigx3)
depsiuvx2 <- depsiuv * ewu_h
sigx5 <- (ewv_h^3 * sigx3)
sigx6 <- S * depsiv * (epsilon)
sigx7 <- epsiu * depsiuv
sigx8 <- (0.5 * sigx4 + 0.5 * (sigx6) - 0.5 * (sigx7))
hessll <- matrix(nrow = nXvar + nuZUvar + nvZVvar, ncol = nXvar +
nuZUvar + nvZVvar)
hessll[1:nXvar, 1:nXvar] <- crossprod(sweep(Xvar, MARGIN = 1,
STATS = wHvar * ((sigx6 - sigx7)/sigx5 - sigx2^2/sigx4^2),
FUN = "*"), Xvar)
hessll[1:nXvar, (nXvar + 1):(nXvar + nuZUvar)] <- crossprod(sweep(Xvar,
MARGIN = 1, STATS = sqrt(12)/2 * wHvar * (S * (epsiu/sigx5 -
sigx2/sigx4^2) * depsiuvx2), FUN = "*"), uHvar)
hessll[1:nXvar, (nXvar + nuZUvar + 1):(nXvar + nuZUvar +
nvZVvar)] <- crossprod(sweep(Xvar, MARGIN = 1, STATS = S *
wHvar * ((0.5 * (depsiv * (S^2 * (epsilon)^2/ewv_h^2 -
1)) - 0.5 * ((epsiu^2/ewv_h^2 - 1) * depsiuv))/sigx4 -
sigx1 * sigx2/sigx4^2), FUN = "*"), vHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + 1):(nXvar +
nuZUvar)] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = sqrt(12)/2 *
wHvar * (((0.5 - sqrt(12)/2 * (epsiu * ewu_h/ewv_h^2))/sigx4 -
sqrt(12)/2 * (depsiuvx2/sigx4^2)) * depsiuvx2), FUN = "*"),
uHvar)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + nuZUvar +
1):(nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(uHvar,
MARGIN = 1, STATS = -wHvar * ((0.5 * ((sqrt(12)/2 - sqrt(12)/2 *
(epsiu^2/ewv_h^2))/sigx4) + sqrt(12)/2 * (sigx1/sigx4^2)) *
depsiuvx2), FUN = "*"), vHvar)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar),
(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)] <- crossprod(sweep(vHvar,
MARGIN = 1, STATS = wHvar * ((0.25 * (S^3 * depsiv *
(epsilon)^3) - 0.25 * (epsiu^3 * depsiuv))/sigx5 -
sigx8 * sigx1/sigx4^2), FUN = "*"), vHvar)
hessll[lower.tri(hessll)] <- t(hessll)[lower.tri(hessll)]
# hessll <- (hessll + (hessll))/2
return(hessll)
}
# Optimization using different algorithms ----------
#' optimizations solve for uniform-normal distribution
#' @param start starting value for optimization
#' @param olsParam OLS coefficients
#' @param dataTable dataframe contains id of observations
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @param method algorithm for solver
#' @param printInfo logical print info during optimization
#' @param itermax maximum iteration
#' @param stepmax stepmax for ucminf
#' @param tol parameter tolerance
#' @param gradtol gradient tolerance
#' @param hessianType how hessian is computed
#' @param qac qac option for maxLik
#' @noRd
uninormAlgOpt <- function(start, olsParam, dataTable, S, nXvar,
uHvar, nuZUvar, vHvar, nvZVvar, Yvar, Xvar, wHvar, method,
printInfo, itermax, stepmax, tol, gradtol, hessianType, qac) {
startVal <- if (!is.null(start))
start else cstuninorm(olsObj = olsParam, epsiRes = dataTable[["olsResiduals"]],
S = S, uHvar = uHvar, nuZUvar = nuZUvar, vHvar = vHvar,
nvZVvar = nvZVvar)
startLoglik <- sum(cuninormlike(startVal, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, wHvar = wHvar,
S = S))
if (method %in% c("bfgs", "bhhh", "nr", "nm", "cg", "sann")) {
maxRoutine <- switch(method, bfgs = function(...) maxBFGS(...),
bhhh = function(...) maxBHHH(...), nr = function(...) maxNR(...),
nm = function(...) maxNM(...), cg = function(...) maxCG(...),
sann = function(...) maxSANN(...))
method <- "maxLikAlgo"
}
mleObj <- switch(method, ucminf = ucminf(par = startVal,
fn = function(parm) -sum(cuninormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, wHvar = wHvar,
S = S)), gr = function(parm) -colSums(cgraduninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S)), hessian = 0, control = list(trace = if (printInfo) 1 else 0,
maxeval = itermax, stepmax = stepmax, xtol = tol,
grtol = gradtol)), maxLikAlgo = maxRoutine(fn = cuninormlike,
grad = cgraduninormlike, hess = chessuninormlike, start = startVal,
finalHessian = if (hessianType == 2) "bhhh" else TRUE,
control = list(printLevel = if (printInfo) 2 else 0,
iterlim = itermax, reltol = tol, tol = tol, qac = qac),
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S), sr1 = trust.optim(x = startVal,
fn = function(parm) -sum(cuninormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, wHvar = wHvar,
S = S)), gr = function(parm) -colSums(cgraduninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S)), method = "SR1", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L)),
sparse = trust.optim(x = startVal, fn = function(parm) -sum(cuninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S)), gr = function(parm) -colSums(cgraduninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S)), hs = function(parm) as(-chessuninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S), "dgCMatrix"), method = "Sparse",
control = list(maxit = itermax, cgtol = gradtol,
stop.trust.radius = tol, prec = tol, report.level = if (printInfo) 2 else 0,
report.precision = 1L, preconditioner = 1L)),
mla = mla(b = startVal, fn = function(parm) -sum(cuninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S)), gr = function(parm) -colSums(cgraduninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S)), hess = function(parm) -chessuninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S), print.info = printInfo, maxiter = itermax,
epsa = gradtol, epsb = gradtol), nlminb = nlminb(start = startVal,
objective = function(parm) -sum(cuninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S)), gradient = function(parm) -colSums(cgraduninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S)), hessian = function(parm) -chessuninormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S), control = list(iter.max = itermax,
trace = if (printInfo) 1 else 0, eval.max = itermax,
rel.tol = tol, x.tol = tol)))
if (method %in% c("ucminf", "nlminb")) {
mleObj$gradient <- colSums(cgraduninormlike(mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S))
}
mlParam <- if (method %in% c("ucminf", "nlminb")) {
mleObj$par
} else {
if (method == "maxLikAlgo") {
mleObj$estimate
} else {
if (method %in% c("sr1", "sparse")) {
mleObj$solution
} else {
if (method == "mla") {
mleObj$b
}
}
}
}
if (hessianType != 2) {
if (method %in% c("ucminf", "nlminb"))
mleObj$hessian <- chessuninormlike(parm = mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S)
if (method == "sr1")
mleObj$hessian <- chessuninormlike(parm = mleObj$solution,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
wHvar = wHvar, S = S)
}
mleObj$logL_OBS <- cuninormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, wHvar = wHvar,
S = S)
mleObj$gradL_OBS <- cgraduninormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, wHvar = wHvar,
S = S)
return(list(startVal = startVal, startLoglik = startLoglik,
mleObj = mleObj, mlParam = mlParam))
}
# Conditional efficiencies estimation ----------
#' efficiencies for uniform-normal distribution
#' @param object object of class sfacross
#' @param level level for confidence interval
#' @noRd
cuninormeff <- function(object, level) {
beta <- object$mlParam[1:(object$nXvar)]
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nuZUvar + 1):(object$nXvar +
object$nuZUvar + object$nvZVvar)]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta), t(Xvar)))
theta <- sqrt(12) * exp(Wu/2)
u1 <- -exp(Wv/2) * ((dnorm((theta + object$S * epsilon)/exp(Wv/2)) -
dnorm(object$S * epsilon/exp(Wv/2)))/(pnorm((theta +
object$S * epsilon)/exp(Wv/2)) - pnorm(object$S * epsilon/exp(Wv/2)))) -
object$S * epsilon
u2 <- exp(Wv/2) * (dnorm(object$S * epsilon/exp(Wv/2))/(1 -
pnorm(object$S * epsilon/exp(Wv/2))) - object$S * epsilon/exp(Wv/2)) # when theta/sigmav ---> Infty
uLB <- exp(Wv/2) * qnorm((1 - level)/2 * pnorm((theta + object$S *
epsilon)/exp(Wv/2)) + (1 - (1 - level)/2) * pnorm(object$S *
epsilon/exp(Wv/2))) - object$S * epsilon
uUB <- exp(Wv/2) * qnorm((1 - (1 - level)/2) * pnorm((theta +
object$S * epsilon)/exp(Wv/2)) + (1 - level)/2 * pnorm(object$S *
epsilon/exp(Wv/2))) - object$S * epsilon
m <- ifelse(-theta < object$S * epsilon & object$S * epsilon <
0, -object$S * epsilon, ifelse(object$S * epsilon >=
0, 0, theta))
if (object$logDepVar == TRUE) {
teJLMS1 <- exp(-u1)
teJLMS2 <- exp(-u2)
teMO <- exp(-m)
teBC1 <- exp(object$S * epsilon + exp(Wv)/2) * (pnorm((object$S *
epsilon + theta)/exp(Wv/2) + exp(Wv/2)) - pnorm(object$S *
epsilon/exp(Wv/2) + exp(Wv/2)))/(pnorm((theta + object$S *
epsilon)/exp(Wv/2)) - pnorm(object$S * epsilon/exp(Wv/2)))
teBC2 <- exp(object$S * epsilon + exp(Wv)/2) * (1 - pnorm(object$S *
epsilon/exp(Wv/2) + exp(Wv/2)))/(1 - pnorm(object$S *
epsilon/exp(Wv/2)))
teBCLB <- exp(-uUB)
teBCUB <- exp(-uLB)
teBC1_reciprocal <- exp(-object$S * epsilon + exp(Wv)/2) *
(pnorm((object$S * epsilon + theta)/exp(Wv/2) - exp(Wv/2)) -
pnorm(object$S * epsilon/exp(Wv/2) - exp(Wv/2)))/(pnorm((theta +
object$S * epsilon)/exp(Wv/2)) - pnorm(object$S *
epsilon/exp(Wv/2)))
teBC2_reciprocal <- exp(-object$S * epsilon + exp(Wv)/2) *
(1 - pnorm(object$S * epsilon/exp(Wv/2) - exp(Wv/2)))/(1 -
pnorm(object$S * epsilon/exp(Wv/2)))
res <- data.frame(u1 = u1, u2 = u2, uLB = uLB, uUB = uUB,
teJLMS1 = teJLMS1, teJLMS2 = teJLMS2, m = m, teMO = teMO,
teBC1 = teBC1, teBC2 = teBC2, teBCLB = teBCLB, teBCUB = teBCUB,
teBC1_reciprocal = teBC1_reciprocal, teBC2_reciprocal = teBC2_reciprocal,
theta = theta)
} else {
res <- data.frame(u1 = u1, u2 = u2, uLB = uLB, uUB = uUB,
m = m, theta = theta)
}
return(res)
}
# Marginal effects on inefficiencies ----------
#' marginal impact on efficiencies for uniform-normal distribution
#' @param object object of class sfacross
#' @noRd
cmarguninorm_Eu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar], nrow = 1),
matrix(sqrt(3)/2 * exp(Wu/2), ncol = 1))
colnames(margEff) <- paste0("Eu_", colnames(uHvar)[-1])
return(margEff)
}
cmarguninorm_Vu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar], nrow = 1),
matrix(exp(Wu), ncol = 1))
colnames(margEff) <- paste0("Vu_", colnames(uHvar)[-1])
return(margEff)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.