Nothing
################################################################################
# #
# R internal functions for the sfaR package #
# #
################################################################################
#------------------------------------------------------------------------------#
# Data: Cross sectional data & Pooled data #
# Model: Standard Stochastic Frontier Analysis #
# Convolution: weibull - normal #
#------------------------------------------------------------------------------#
# Log-likelihood ----------
#' log-likelihood for weibull-normal distribution
#' @param parm all parameters to be estimated
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @param N number of observations
#' @param FiMat matrix of random draws
#' @noRd
cweibullnormlike <- function(parm, nXvar, nuZUvar, nvZVvar, uHvar,
vHvar, Yvar, Xvar, S, N, FiMat, wHvar) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
k <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
if (k < 0)
return(NA)
urMat <- sweep((-log(1 - FiMat))^(1/k), MARGIN = 1, STATS = exp(Wu/2),
FUN = "*")
uepsi <- sweep(S * urMat, MARGIN = 1, STATS = epsilon, FUN = "+")
duepsi <- dnorm(sweep(uepsi, MARGIN = 1, STATS = exp(Wv/2),
FUN = "/"))
ll <- log(apply(sweep(duepsi, MARGIN = 1, STATS = exp(Wv/2),
FUN = "/"), 1, mean))
return(ll * wHvar)
}
# starting value for the log-likelihood ----------
#' starting values for weibull-normal distribution
#' @param olsObj OLS object
#' @param epsiRes residuals from OLS
#' @param S integer for cost/prod estimation
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @noRd
cstweibullnorm <- function(olsObj, epsiRes, S, nuZUvar, uHvar,
nvZVvar, vHvar) {
m2 <- sum(epsiRes^2)/length(epsiRes)
m3 <- sum(epsiRes^3)/length(epsiRes)
if (S * m3 > 0) {
varu <- (abs((-S * m3/2)))^(2/3)
} else {
varu <- (-S * m3/2)^(2/3)
}
if (m2 < varu) {
varv <- abs(m2 - varu)
} else {
varv <- m2 - varu
}
dep_u <- 1/2 * log((epsiRes^2 - varv)^2)
dep_v <- 1/2 * log((epsiRes^2 - varu)^2)
reg_hetu <- if (nuZUvar == 1) {
lm(log(varu) ~ 1)
} else {
lm(dep_u ~ ., data = as.data.frame(uHvar[, 2:nuZUvar,
drop = FALSE]))
}
if (any(is.na(reg_hetu$coefficients)))
stop("At least one of the OLS coefficients of 'uhet' is NA: ",
paste(colnames(uHvar)[is.na(reg_hetu$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
reg_hetv <- if (nvZVvar == 1) {
lm(log(varv) ~ 1)
} else {
lm(dep_v ~ ., data = as.data.frame(vHvar[, 2:nvZVvar,
drop = FALSE]))
}
if (any(is.na(reg_hetv$coefficients)))
stop("at least one of the OLS coefficients of 'vhet' is NA: ",
paste(colnames(vHvar)[is.na(reg_hetv$coefficients)],
collapse = ", "), ". This may be due to a singular matrix due to potential perfect multicollinearity",
call. = FALSE)
delta <- coefficients(reg_hetu)
names(delta) <- paste0("Zu_", colnames(uHvar))
phi <- coefficients(reg_hetv)
names(phi) <- paste0("Zv_", colnames(vHvar))
if (names(olsObj)[1] == "(Intercept)") {
beta <- c(olsObj[1] + S * sqrt(varu), olsObj[-1])
} else {
beta <- olsObj
}
return(c(beta, delta, phi, k = 1))
}
# Gradient of the likelihood function ----------
#' gradient for weibull-normal distribution
#' @param parm all parameters to be estimated
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @param N number of observations
#' @param FiMat matrix of random draws
#' @noRd
cgradweibullnormlike <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S, N, FiMat, wHvar) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
k <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
gradll <- matrix(nrow = N, ncol = nXvar + nuZUvar + nvZVvar +
1)
lFimat <- (-log(1 - FiMat))^(1/k)
lFiu <- sweep(S * lFimat, MARGIN = 1, STATS = exp(Wu/2),
FUN = "*")
lFiuepsi <- sweep(lFiu, MARGIN = 1, STATS = epsilon, FUN = "+")
dFimat <- dnorm(sweep(lFiuepsi, MARGIN = 1, STATS = 1/exp(Wv/2),
FUN = "*"))
dFiv <- sweep(dFimat, MARGIN = 1, STATS = 1/exp(Wv/2), FUN = "*")
lFi1 <- dFimat * lFiuepsi
lFi2 <- log(-log(1 - FiMat))
lFi3 <- lFimat * lFi1
sigx1 <- sweep(lFi1, MARGIN = 1, STATS = 1/exp(Wv/2)^3, FUN = "*")
sigx2 <- sweep(S * lFi2 * lFi3, MARGIN = 1, STATS = exp(Wu/2)/(k^2 *
exp(Wv/2)^3), FUN = "*")
sigx3 <- sweep(lFi3, MARGIN = 1, STATS = exp(Wu/2)/exp(Wv/2)^3,
FUN = "*")
sigx4 <- sweep(sweep(0.5 * lFi1 * lFiuepsi, MARGIN = 1, STATS = 1/exp(Wv/2)^2,
FUN = "*") - 0.5 * dFimat, MARGIN = 1, STATS = 1/exp(Wv/2),
FUN = "*")
sdFiv <- apply(dFiv, 1, sum)
gx <- matrix(nrow = N, ncol = nXvar)
for (k in seq_len(nXvar)) {
gx[, k] <- apply(sweep(sigx1, MARGIN = 1, STATS = Xvar[,
k], FUN = "*"), 1, sum)/sdFiv
}
gu <- matrix(nrow = N, ncol = nuZUvar)
for (k in seq_len(nuZUvar)) {
gu[, k] <- apply(sweep(sigx3, MARGIN = 1, STATS = -(0.5 *
(S * uHvar[, k])), FUN = "*"), 1, sum)/sdFiv
}
gv <- matrix(nrow = N, ncol = nvZVvar)
for (k in seq_len(nvZVvar)) {
gv[, k] <- apply(sweep(sigx4, MARGIN = 1, STATS = vHvar[,
k], FUN = "*"), 1, sum)/sdFiv
}
gradll <- cbind(gx, gu, gv, apply(sigx2, 1, sum)/sdFiv)
return(sweep(gradll, MARGIN = 1, STATS = wHvar, FUN = "*"))
}
# Hessian of the likelihood function ----------
#' hessian for weibull-normal distribution
#' @param parm all parameters to be estimated
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @param N number of observations
#' @param FiMat matrix of random draws
#' @noRd
chessweibullnormlike <- function(parm, nXvar, nuZUvar, nvZVvar,
uHvar, vHvar, Yvar, Xvar, S, N, FiMat, wHvar) {
beta <- parm[1:(nXvar)]
delta <- parm[(nXvar + 1):(nXvar + nuZUvar)]
phi <- parm[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)]
k <- parm[nXvar + nuZUvar + nvZVvar + 1]
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- Yvar - as.numeric(crossprod(matrix(beta), t(Xvar)))
ewu_h <- exp(Wu/2)
ewv_h <- exp(Wv/2)
Q <- dim(FiMat)[2]
lFimat <- (-log(1 - FiMat))^(1/k)
lFiu <- sweep(S * lFimat, MARGIN = 1, STATS = ewu_h, FUN = "*")
lFiuepsi <- sweep(lFiu, MARGIN = 1, STATS = epsilon, FUN = "+")
dFimat <- dnorm(sweep(lFiuepsi, MARGIN = 1, STATS = 1/ewv_h,
FUN = "*"))
lFi1sq <- dFimat * lFiuepsi^2
lFi1 <- dFimat * lFiuepsi
lFi2 <- log(-log(1 - FiMat))
lFid <- lFimat * dFimat
sigx1 <- sweep(lFi1, MARGIN = 1, STATS = 1/ewv_h^3, FUN = "*")
sigx2 <- sweep(S * lFid * lFi2 * lFiuepsi, MARGIN = 1, STATS = ewu_h/(k^2 *
ewv_h^3), FUN = "*")
sigx3 <- sweep(sweep((lFi1sq), MARGIN = 1, STATS = 0.5/ewv_h^2,
FUN = "*") - 0.5 * dFimat, MARGIN = 1, STATS = 1/ewv_h,
FUN = "*")
sigx4 <- sweep(lFid * lFiuepsi, MARGIN = 1, STATS = ewu_h/ewv_h^3,
FUN = "*")
dFiv <- sweep(dFimat, MARGIN = 1, STATS = 1/ewv_h, FUN = "*")
sdFiv <- apply(dFiv, 1, sum)
sigx5 <- sweep((lFiuepsi^2), MARGIN = 1, STATS = 1/ewv_h^2,
FUN = "*") - 1
sigx6 <- sweep(sigx5 * dFimat, MARGIN = 1, STATS = 1/ewv_h^3,
FUN = "*")
sigx7 <- sweep((lFimat * lFiuepsi^2), MARGIN = 1, STATS = 1/ewv_h^2,
FUN = "*") - lFimat
sigx8 <- sweep(sigx7 * dFimat * ewu_h, MARGIN = 1, STATS = 1/ewv_h^3,
FUN = "*")
sigx9 <- sweep((lFiuepsi^2), MARGIN = 1, STATS = 1/ewv_h^2,
FUN = "*") - 2
sigx10 <- sweep(dFimat * lFi2, MARGIN = 1, STATS = ewu_h/(k^2 *
ewv_h^3), FUN = "*")
sigx11 <- sweep(0.5 * (S * (-log(1 - FiMat))^(2/k) * lFiuepsi),
MARGIN = 1, STATS = ewu_h/ewv_h^2, FUN = "*")
sigx12 <- sweep(0.5 * (S * (-log(1 - FiMat))^(2/k)), MARGIN = 1,
STATS = ewu_h, FUN = "*")
sigx13 <- sweep(dFimat, MARGIN = 1, STATS = ewu_h/ewv_h^3,
FUN = "*")
sigx14 <- sweep((lFimat * lFiuepsi^2), MARGIN = 1, STATS = 1/ewv_h^2,
FUN = "*")
sigx15 <- sweep(dFimat * lFiuepsi, MARGIN = 1, STATS = ewu_h/ewv_h^3,
FUN = "*")
sigx16 <- sweep((lFiuepsi^2), MARGIN = 1, STATS = 1/ewv_h^2,
FUN = "*")
sigx17 <- sweep(lFi1sq, MARGIN = 1, STATS = 1/ewv_h^2, FUN = "*")
sigx18 <- sweep(((0.5 * (0.5 * sigx16 - 1) - 0.25) * sigx17 -
0.5 * (0.5 * (sigx17) - 0.5 * dFimat)), MARGIN = 1, STATS = 1/ewv_h,
FUN = "*")
sigx19 <- sweep((lFimat * lFiuepsi^2), MARGIN = 1, STATS = 1/(k^2 *
ewv_h^5), FUN = "*")
sigx20 <- sweep((k^2 * lFimat), MARGIN = 1, STATS = ewv_h^3/(k^2 *
ewv_h^3)^2, FUN = "*")
sigx21 <- sweep((0.5 * sigx19 - 1.5 * sigx20) * dFimat *
lFi2 * lFiuepsi, MARGIN = 1, STATS = ewu_h, FUN = "*")
sigx22 <- sweep(S * (-log(1 - FiMat))^(2/k) * lFiuepsi, MARGIN = 1,
STATS = ewu_h/ewv_h^2, FUN = "*")
sigx23 <- sweep(S * (-log(1 - FiMat))^(2/k), MARGIN = 1,
STATS = ewu_h, FUN = "*")
sigx24 <- sweep((lFiuepsi * (sigx22 - lFimat) - sigx23) *
lFi2, MARGIN = 1, STATS = 1/(k^4 * ewv_h^3), FUN = "*")
sigx25 <- sweep((k * lFimat * lFiuepsi), MARGIN = 1, STATS = ewv_h^3/(k^2 *
ewv_h^3)^2, FUN = "*")
sigx26 <- sweep(S * (sigx24 - 2 * sigx25) * dFimat * lFi2,
MARGIN = 1, STATS = ewu_h, FUN = "*")
X1 <- matrix(nrow = N, ncol = nXvar)
X7 <- matrix(nrow = N, ncol = nXvar)
for (k in seq_len(nXvar)) {
X1[, k] <- apply(sweep(sigx1, MARGIN = 1, STATS = Xvar[,
k], FUN = "*"), 1, sum)
X7[, k] <- apply(sweep(S * sigx7 * sigx10, MARGIN = 1,
STATS = Xvar[, k]/sdFiv, FUN = "*"), 1, sum)
}
Zu4 <- matrix(nrow = N, ncol = nuZUvar)
Zu10 <- matrix(nrow = N, ncol = nuZUvar)
for (k in seq_len(nuZUvar)) {
Zu4[, k] <- apply(sweep(-(0.5 * (S * sigx4)), MARGIN = 1,
STATS = uHvar[, k], FUN = "*"), 1, sum)
Zu10[, k] <- apply(sweep(S * ((0.5 * lFimat - sigx11) *
lFiuepsi + sigx12) * sigx10, MARGIN = 1, STATS = uHvar[,
k]/sdFiv, FUN = "*"), 1, sum)
}
Zv3 <- matrix(nrow = N, ncol = nvZVvar)
for (k in seq_len(nvZVvar)) {
Zv3[, k] <- apply(sweep(sigx3, MARGIN = 1, STATS = vHvar[,
k], FUN = "*"), 1, sum)
}
Zv21 <- matrix(nrow = N, ncol = nvZVvar)
for (k in seq_len(nvZVvar)) {
Zv21[, k] <- apply(sweep(S * sigx21, MARGIN = 1, STATS = vHvar[,
k]/sdFiv, FUN = "*"), 1, sum)
}
X6 <- list()
Xu8 <- list()
Xv9 <- list()
Zu11 <- list()
Zuv14 <- list()
Zv18 <- list()
for (r in seq_len(Q)) {
X6[[r]] <- crossprod(sweep(Xvar, MARGIN = 1, STATS = wHvar *
sigx6[, r]/sdFiv, FUN = "*"), Xvar)
Xu8[[r]] <- crossprod(sweep(Xvar, MARGIN = 1, STATS = -wHvar *
(0.5 * (S * sigx8))[, r]/sdFiv, FUN = "*"), uHvar)
Xv9[[r]] <- crossprod(sweep(Xvar, MARGIN = 1, STATS = wHvar *
((0.5 * sigx9 - 0.5) * sigx1)[, r]/sdFiv, FUN = "*"),
vHvar)
Zu11[[r]] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = -wHvar *
(0.5 * (S * ((0.5 * lFimat - sigx11) * lFiuepsi +
sigx12) * sigx13))[, r]/sdFiv, FUN = "*"), uHvar)
Zuv14[[r]] <- crossprod(sweep(uHvar, MARGIN = 1, STATS = wHvar *
(S * (0.25 * lFimat + 0.5 * (lFimat - 0.5 * sigx14)) *
sigx15)[, r]/sdFiv, FUN = "*"), vHvar)
Zv18[[r]] <- crossprod(sweep(vHvar, MARGIN = 1, STATS = wHvar *
sigx18[, r]/sdFiv, FUN = "*"), vHvar)
}
hessll <- matrix(nrow = nXvar + nuZUvar + nvZVvar + 1, ncol = nXvar +
nuZUvar + nvZVvar + 1)
hessll[1:nXvar, 1:nXvar] <- Reduce("+", X6) - crossprod(sweep(X1,
MARGIN = 1, STATS = wHvar/sdFiv^2, FUN = "*"), X1)
hessll[1:nXvar, (nXvar + 1):(nXvar + nuZUvar)] <- Reduce("+",
Xu8) - crossprod(sweep(X1, MARGIN = 1, STATS = wHvar/sdFiv^2,
FUN = "*"), Zu4)
hessll[1:nXvar, (nXvar + nuZUvar + 1):(nXvar + nuZUvar +
nvZVvar)] <- Reduce("+", Xv9) - crossprod(sweep(X1, MARGIN = 1,
STATS = wHvar/sdFiv^2, FUN = "*"), Zv3)
hessll[1:nXvar, nXvar + nuZUvar + nvZVvar + 1] <- colSums(sweep(X7,
MARGIN = 1, STATS = wHvar, FUN = "*") - sweep(X1, MARGIN = 1,
STATS = wHvar * apply(sigx2, 1, sum)/sdFiv^2, FUN = "*"))
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + 1):(nXvar +
nuZUvar)] <- Reduce("+", Zu11) - crossprod(sweep(Zu4,
MARGIN = 1, STATS = wHvar/sdFiv^2, FUN = "*"), Zu4)
hessll[(nXvar + 1):(nXvar + nuZUvar), (nXvar + nuZUvar +
1):(nXvar + nuZUvar + nvZVvar)] <- Reduce("+", Zuv14) -
crossprod(sweep(Zu4, MARGIN = 1, STATS = wHvar/sdFiv^2,
FUN = "*"), Zv3)
hessll[(nXvar + 1):(nXvar + nuZUvar), nXvar + nuZUvar + nvZVvar +
1] <- colSums(sweep(Zu10, MARGIN = 1, STATS = wHvar,
FUN = "*") - sweep(Zu4, MARGIN = 1, STATS = wHvar * apply(sigx2,
1, sum)/sdFiv^2, FUN = "*"))
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar),
(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar)] <- Reduce("+",
Zv18) - crossprod(sweep(Zv3, MARGIN = 1, STATS = wHvar/sdFiv^2,
FUN = "*"), Zv3)
hessll[(nXvar + nuZUvar + 1):(nXvar + nuZUvar + nvZVvar),
nXvar + nuZUvar + nvZVvar + 1] <- colSums(sweep(Zv21,
MARGIN = 1, STATS = wHvar, FUN = "*") - sweep(Zv3, MARGIN = 1,
STATS = wHvar * apply(sigx2, 1, sum)/sdFiv^2, FUN = "*"))
hessll[nXvar + nuZUvar + nvZVvar + 1, nXvar + nuZUvar + nvZVvar +
1] <- sum(wHvar * (apply(sigx26, 1, sum) - apply(sigx2,
1, sum)^2/sdFiv)/sdFiv)
hessll[lower.tri(hessll)] <- t(hessll)[lower.tri(hessll)]
# hessll <- (hessll + (hessll))/2
return(hessll)
}
# Optimization using different algorithms ----------
#' optimizations solve for weibull-normal distribution
#' @param start starting value for optimization
#' @param olsParam OLS coefficients
#' @param dataTable dataframe contains id of observations
#' @param nXvar number of main variables (inputs + env. var)
#' @param nuZUvar number of Zu variables
#' @param nvZVvar number of Zv variables
#' @param uHvar matrix of Zu variables
#' @param vHvar matrix of Zv variables
#' @param Yvar vector of dependent variable
#' @param Xvar matrix of main variables
#' @param S integer for cost/prod estimation
#' @param wHvar vector of weights (weighted likelihood)
#' @param N number of observations
#' @param FiMat matrix of random draws
#' @param method algorithm for solver
#' @param printInfo logical print info during optimization
#' @param itermax maximum iteration
#' @param stepmax stepmax for ucminf
#' @param tol parameter tolerance
#' @param gradtol gradient tolerance
#' @param hessianType how hessian is computed
#' @param qac qac option for maxLik
#' @noRd
weibullnormAlgOpt <- function(start, olsParam, dataTable, S,
nXvar, N, FiMat, uHvar, nuZUvar, vHvar, nvZVvar, Yvar, Xvar,
wHvar, method, printInfo, itermax, stepmax, tol, gradtol,
hessianType, qac) {
startVal <- if (!is.null(start))
start else cstweibullnorm(olsObj = olsParam, epsiRes = dataTable[["olsResiduals"]],
S = S, uHvar = uHvar, nuZUvar = nuZUvar, vHvar = vHvar,
nvZVvar = nvZVvar)
startLoglik <- sum(cweibullnormlike(startVal, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat, wHvar = wHvar))
if (method %in% c("bfgs", "bhhh", "nr", "nm", "cg", "sann")) {
maxRoutine <- switch(method, bfgs = function(...) maxLik::maxBFGS(...),
bhhh = function(...) maxLik::maxBHHH(...), nr = function(...) maxLik::maxNR(...),
nm = function(...) maxLik::maxNM(...), cg = function(...) maxLik::maxCG(...),
sann = function(...) maxLik::maxSANN(...))
method <- "maxLikAlgo"
}
mleObj <- switch(method, ucminf = ucminf::ucminf(par = startVal,
fn = function(parm) -sum(cweibullnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat, wHvar = wHvar)), gr = function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)), hessian = 0,
control = list(trace = if (printInfo) 1 else 0, maxeval = itermax,
stepmax = stepmax, xtol = tol, grtol = gradtol)),
maxLikAlgo = maxRoutine(fn = cweibullnormlike, grad = cgradweibullnormlike,
hess = chessweibullnormlike, start = startVal, finalHessian = if (hessianType ==
2) "bhhh" else TRUE, control = list(printLevel = if (printInfo) 2 else 0,
iterlim = itermax, reltol = tol, tol = tol, qac = qac),
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar), sr1 = trustOptim::trust.optim(x = startVal,
fn = function(parm) -sum(cweibullnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S,
N = N, FiMat = FiMat, wHvar = wHvar)), gr = function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)),
method = "SR1", control = list(maxit = itermax, cgtol = gradtol,
stop.trust.radius = tol, prec = tol, report.level = if (printInfo) 2 else 0,
report.precision = 1L)), sparse = trustOptim::trust.optim(x = startVal,
fn = function(parm) -sum(cweibullnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S,
N = N, FiMat = FiMat, wHvar = wHvar)), gr = function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)),
hs = function(parm) as(-chessweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar),
"dgCMatrix"), method = "Sparse", control = list(maxit = itermax,
cgtol = gradtol, stop.trust.radius = tol, prec = tol,
report.level = if (printInfo) 2 else 0, report.precision = 1L,
preconditioner = 1L)), mla = marqLevAlg::mla(b = startVal,
fn = function(parm) -sum(cweibullnormlike(parm, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S,
N = N, FiMat = FiMat, wHvar = wHvar)), gr = function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)),
hess = function(parm) -chessweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar),
print.info = printInfo, maxiter = itermax, epsa = gradtol,
epsb = gradtol), nlminb = nlminb(start = startVal,
objective = function(parm) -sum(cweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)),
gradient = function(parm) -colSums(cgradweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)),
hessian = function(parm) -chessweibullnormlike(parm,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar),
control = list(iter.max = itermax, trace = if (printInfo) 1 else 0,
eval.max = itermax, rel.tol = tol, x.tol = tol)))
if (method %in% c("ucminf", "nlminb")) {
mleObj$gradient <- colSums(cgradweibullnormlike(mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar))
}
mlParam <- if (method %in% c("ucminf", "nlminb")) {
mleObj$par
} else {
if (method == "maxLikAlgo") {
mleObj$estimate
} else {
if (method %in% c("sr1", "sparse")) {
mleObj$solution
} else {
if (method == "mla") {
mleObj$b
}
}
}
}
if (hessianType != 2) {
if (method %in% c("ucminf", "nlminb"))
mleObj$hessian <- chessweibullnormlike(parm = mleObj$par,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)
if (method == "sr1")
mleObj$hessian <- chessweibullnormlike(parm = mleObj$solution,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)
}
mleObj$logL_OBS <- cweibullnormlike(parm = mlParam, nXvar = nXvar,
nuZUvar = nuZUvar, nvZVvar = nvZVvar, uHvar = uHvar,
vHvar = vHvar, Yvar = Yvar, Xvar = Xvar, S = S, N = N,
FiMat = FiMat, wHvar = wHvar)
mleObj$gradL_OBS <- cgradweibullnormlike(parm = mlParam,
nXvar = nXvar, nuZUvar = nuZUvar, nvZVvar = nvZVvar,
uHvar = uHvar, vHvar = vHvar, Yvar = Yvar, Xvar = Xvar,
S = S, N = N, FiMat = FiMat, wHvar = wHvar)
return(list(startVal = startVal, startLoglik = startLoglik,
mleObj = mleObj, mlParam = mlParam))
}
# average efficiency (BC style) evaluation ----------
#' function to estimate unconditional efficiency (Battese and Coelli style)
#' @param u inefficiency variable over which integration will be done
#' @param sigma standard error of the weibull distribution
#' @param k location parameter
#' @noRd
fnExpUWeiNorm <- function(u, sigma, k) {
exp(-u) * k/sigma * (u/sigma)^(k - 1) * exp(-(u/sigma)^k)
}
# fn conditional inefficiencies ----------
#' function to estimate conditional inefficiency
#' @param u inefficiency variable over which integration will be done
#' @param sigmaU standard error of the weibull distribution
#' @param sigmaV standard error of the two-sided error component
#' @param k location parameter
#' @param epsilon composite noise
#' @param S integer for cost/prod estimation
#' @noRd
fnCondEffWeibull <- function(u, sigmaU, sigmaV, k, epsilon, S) {
u * k/(sigmaU * sigmaV) * (u/sigmaU)^(k - 1) * exp(-(u/sigmaU)^k) *
dnorm((epsilon + S * u)/sigmaV)
}
# fn conditional efficiencies ----------
#' function to estimate conditional efficiency (Battese and Coelli style)
#' @param u inefficiency variable over which integration will be done
#' @param sigmaU standard error of the weibull distribution
#' @param sigmaV standard error of the two-sided error component
#' @param k location parameter
#' @param epsilon composite noise
#' @param S integer for cost/prod estimation
#' @noRd
fnCondBCEffWeibull <- function(u, sigmaU, sigmaV, k, epsilon,
S) {
exp(-u) * k/(sigmaU * sigmaV) * (u/sigmaU)^(k - 1) * exp(-(u/sigmaU)^k) *
dnorm((epsilon + S * u)/sigmaV)
}
# fn reciprocal conditional efficiencies----------
#' function to estimate conditional efficiency (Battese and Coelli style)
#' @param u inefficiency variable over which integration will be done
#' @param sigmaU standard error of the weibull distribution
#' @param sigmaV standard error of the two-sided error component
#' @param k location parameter
#' @param epsilon composite noise
#' @param S integer for cost/prod estimation
#' @noRd
fnCondBCreciprocalEffWeibull <- function(u, sigmaU, sigmaV, k,
epsilon, S) {
exp(u) * k/(sigmaU * sigmaV) * (u/sigmaU)^(k - 1) * exp(-(u/sigmaU)^k) *
dnorm((epsilon + S * u)/sigmaV)
}
# Conditional efficiencies estimation ----------
#' efficiencies for weibull-normal distribution
#' @param object object of class sfacross
#' @param level level for confidence interval
#' @noRd
cweibullnormeff <- function(object, level) {
beta <- object$mlParam[1:(object$nXvar)]
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
phi <- object$mlParam[(object$nXvar + object$nuZUvar + 1):(object$nXvar +
object$nuZUvar + object$nvZVvar)]
k <- object$mlParam[object$nXvar + object$nuZUvar + object$nvZVvar +
1]
Xvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 1)
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
vHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 3)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
Wv <- as.numeric(crossprod(matrix(phi), t(vHvar)))
epsilon <- model.response(model.frame(object$formula, data = object$dataTable)) -
as.numeric(crossprod(matrix(beta), t(Xvar)))
u <- numeric(object$Nobs)
density_epsilon_vec <- numeric(object$Nobs)
for (i in seq_len(object$Nobs)) {
ur <- exp(Wu[i]/2) * (-log(1 - object$FiMat[i, ]))^(1/k)
density_epsilon_vec[i] <- mean(1/exp(Wv[i]/2) * dnorm((epsilon[i] +
object$S * ur)/exp(Wv[i]/2)))
u[i] <- hcubature(f = fnCondEffWeibull, lowerLimit = 0,
upperLimit = Inf, maxEval = 100, fDim = 1, sigmaU = exp(Wu[i]/2),
sigmaV = exp(Wv[i]/2), k = k, epsilon = epsilon[i],
S = object$S, vectorInterface = FALSE, tol = 1e-15)$integral/density_epsilon_vec[i]
}
if (object$logDepVar == TRUE) {
teJLMS <- exp(-u)
teBC <- numeric(object$Nobs)
teBC_reciprocal <- numeric(object$Nobs)
for (i in seq_len(object$Nobs)) {
teBC[i] <- hcubature(f = fnCondBCEffWeibull, lowerLimit = 0,
upperLimit = Inf, maxEval = 100, fDim = 1, sigmaU = exp(Wu[i]/2),
sigmaV = exp(Wv[i]/2), k = k, epsilon = epsilon[i],
S = object$S, vectorInterface = FALSE, tol = 1e-15)$integral/density_epsilon_vec[i]
teBC_reciprocal[i] <- hcubature(f = fnCondBCreciprocalEffWeibull,
lowerLimit = 0, upperLimit = Inf, maxEval = 100,
fDim = 1, sigmaU = exp(Wu[i]/2), sigmaV = exp(Wv[i]/2),
k = k, epsilon = epsilon[i], S = object$S, vectorInterface = FALSE,
tol = 1e-15)$integral/density_epsilon_vec[i]
}
res <- data.frame(u = u, teJLMS = teJLMS, teBC = teBC,
teBC_reciprocal = teBC_reciprocal)
} else {
res <- data.frame(u = u)
}
return(res)
}
# Marginal effects on inefficiencies ----------
#' marginal impact on efficiencies for weibull-normal distribution
#' @param object object of class sfacross
#' @noRd
cmargweibullnorm_Eu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
k <- object$mlParam[object$nXvar + object$nuZUvar + object$nvZVvar +
1]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar] * 1/2,
nrow = 1), matrix(exp(Wu/2) * gamma(1 + 1/k), ncol = 1))
colnames(margEff) <- paste0("Eu_", colnames(uHvar)[-1])
return(data.frame(margEff))
}
cmargweibullnorm_Vu <- function(object) {
delta <- object$mlParam[(object$nXvar + 1):(object$nXvar +
object$nuZUvar)]
k <- object$mlParam[object$nXvar + object$nuZUvar + object$nvZVvar +
1]
uHvar <- model.matrix(object$formula, data = object$dataTable,
rhs = 2)
Wu <- as.numeric(crossprod(matrix(delta), t(uHvar)))
margEff <- kronecker(matrix(delta[2:object$nuZUvar], nrow = 1),
matrix(exp(Wu) * (gamma(1 + 2/k) - (gamma(1 + 1/k))^2),
ncol = 1))
colnames(margEff) <- paste0("Vu_", colnames(uHvar)[-1])
return(data.frame(margEff))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.