R/get_tidy_association.R

Defines functions get_tidy_association

Documented in get_tidy_association

#' Get Tidy Signature Association Results
#'
#' @param cor_res data returned by [get_sig_feature_association()]
#' @param p_adjust logical, if `TRUE`, adjust p values by data type.
#' @param method p value correction method, see [stats::p.adjust] for
#' more detail.
#'
#' @return a `data.frame`
#' @export
#' @seealso [get_sig_feature_association]
get_tidy_association <- function(cor_res, p_adjust = FALSE, method = "fdr") {
  co_null <- identical(cor_res$corr_co, list())
  ca_null <- identical(cor_res$corr_ca, list())

  if (all(co_null, ca_null)) {
    message("No correlation result found, please check the previous step!")
    return(invisible())
  }

  if (co_null) {
    all_names <- names(cor_res$corr_ca)
  } else {
    all_names <- names(cor_res$corr_co)
  }

  common_names <- setdiff(all_names, "data")
  res <- list()
  tidy <- list()
  for (i in common_names) {
    res[[i]] <- cbind(cor_res[["corr_co"]][[i]], cor_res[["corr_ca"]][[i]])
    tidy[[i]] <- res[[i]] %>%
      as.data.frame() %>%
      tibble::rownames_to_column("signature") %>%
      tibble::as_tibble() %>%
      tidyr::gather_(key_col = "feature", value_col = "value", gather_cols = colnames(res[[i]]))
  }

  data <- dplyr::bind_rows(tidy, .id = "data_type") %>%
    tidyr::spread_(key_col = "data_type", value_col = "value") %>%
    dplyr::mutate(
      type = ifelse(.data$feature %in% colnames(cor_res$corr_ca$measure), "ca", "co"),
      feature = factor(.data$feature, levels = c(
        colnames(cor_res$corr_co$measure),
        colnames(cor_res$corr_ca$measure)
      ))
    )

  if (p_adjust) {
    if (length(table(data$type)) > 1) {
      col_orders <- colnames(data)
      data <- data %>%
        dplyr::group_by(.data$type) %>%
        tidyr::nest() %>%
        dplyr::mutate(data = purrr::map(.data$data, function(df, method) {
          df$p <- p.adjust(df$p, method = method)
          df
        }, method = method)) %>%
        tidyr::unnest("data") %>%
        dplyr::select(col_orders) %>%
        dplyr::ungroup()
    } else {
      data$p <- p.adjust(data$p, method = method)
    }
  }

  data
}

Try the sigminer package in your browser

Any scripts or data that you put into this service are public.

sigminer documentation built on May 29, 2024, 3:11 a.m.