Nothing
## File Name: lavaan2mirt.R
## File Version: 0.641
#--- Converting lavaan syntax into mirt syntax
lavaan2mirt <- function( dat, lavmodel, est.mirt=TRUE, poly.itemtype="gpcm", ... )
{
TAM::require_namespace_msg("mirt")
# lavaanify model
lavmodel2 <- TAM::lavaanify.IRT( lavmodel, data=dat )$lavpartable
# select used items
items <- intersect( unique( paste(lavmodel2$rhs )), colnames(dat) )
dat <- dat[, items ]
# maximum category
maxK <- max( dat, na.rm=TRUE )
ind1 <- which( lavmodel2$op=="~~")
ind2 <- which( ( lavmodel2$lhs==lavmodel2$rhs ) & ( lavmodel2$lhs %in% items ) )
ind <- intersect(ind1, ind2 )
if ( length(ind) > 0 ){
lavmodel2 <- lavmodel2[ - ind, ]
}
# variable names
items <- colnames(dat)
# extract factors
factors <- unique( paste(lavmodel2$lhs[ lavmodel2$op=="=~" ] ))
# create mirt syntax
mirtmodel <- NULL
sel.items <- NULL
#------------
#**** loop over factors
for (ff in factors){
# ff <- factors[1]
ind.ff <- which( ( lavmodel2$op=="=~" ) & ( lavmodel2$lhs==ff ) )
mff <- match( lavmodel2[ ind.ff, "rhs" ], items )
sel.items <- c( sel.items, mff )
mirtmodel <- paste0( mirtmodel,
paste0( ff, "=", paste0( mff, collapse="," ), "\n") )
}
#------------
#***** look for constraints among item parameters (loadings and intercepts)
lavmodel21 <- lavmodel2
lavmodel21 <- lavmodel21[ paste(lavmodel21$op) %in% c("=~","|","?="), ]
lavlabels <- unique(paste(lavmodel21$label))
lavlabels <- lavlabels[ paste(lavlabels ) !="" ]
if ( length(lavlabels) > 0 ){
vv0 <- "CONSTRAIN="
for (ll in lavlabels ){
# ll <- lavlabels[1]
lav2.ll <- lavmodel21[ paste(lavmodel21$label)==ll, ]
if (lav2.ll$op[1]=="=~"){
pars.ll <- paste0( "a", match( lav2.ll$lhs, factors )[1] )
isel <- lav2.ll$rhs
}
# Example: CONSTRAIN=(1-12,a1),(1-12,a2),(1-12,a3)
if (lav2.ll$op[1]=="|"){
pars.ll <- gsub( "t", "d", lav2.ll$rhs[1] )
if (maxK==1){ pars.ll <- "d" }
isel <- lav2.ll$lhs
}
if (lav2.ll$op[1]=="?="){
pars.ll <- gsub( "g1", "g", lav2.ll$rhs[1] )
pars.ll <- gsub( "s1", "u", pars.ll )
isel <- lav2.ll$lhs
}
vv2 <- paste0( paste0( match( isel, items ), collapse=","), ",", pars.ll )
vv2 <- paste0("(", vv2, ")")
if (ll !=lavlabels[1] ){ vv0 <- paste0( vv0, "," ) }
vv0 <- paste0( vv0, vv2 )
}
mirtmodel <- paste0( mirtmodel, vv0, "\n")
}
#------------
#**** estimate variances and covariances
lavmodel21 <- lavmodel2
lavmodel21 <- lavmodel21[ paste(lavmodel21$op) %in% c("~~"), ]
LL <- nrow(lavmodel21)
vv1 <- "COV="
if (LL>0){
for (ll in 1:LL){
vv2 <- paste0(lavmodel21[ll,"lhs"], "*", lavmodel21[ll,"rhs"] )
if (ll>1){ vv1 <- paste0( vv1, "," ) }
vv1 <- paste0( vv1, vv2 )
}
mirtmodel <- paste0( mirtmodel, vv1, "\n")
}
#------------
#**** estimate means
lavmodel21 <- lavmodel2
lavmodel21 <- lavmodel21[ paste(lavmodel21$op) %in% c("~1"), ]
lavmodel21 <- lavmodel21[ paste(lavmodel21$lhs) %in% factors, ]
LL <- nrow(lavmodel21)
vv1 <- "MEAN="
if (LL>0){
for (ll in 1:LL){
vv2 <- paste0(lavmodel21[ll,"lhs"])
if (ll>1){ vv1 <- paste0( vv1, "," ) }
vv1 <- paste0( vv1, vv2 )
}
mirtmodel <- paste0( mirtmodel, vv1, "\n")
}
#------------
#**** create object of class mirt.model
mirtmodel1 <- mirt::mirt.model(mirtmodel)
#------------
#**** create parameter values
# define item types: 4PL or gpcm
I <- ncol(dat)
maxK1 <- apply( dat, 2, max, na.rm=TRUE )
typeK1 <- "4PL"
ind1 <- which( lavmodel2$op=="=~" )
ind2 <- which( ( ! lavmodel2$free ) & ( lavmodel2$ustart %in% c(0,1) ) )
ind2 <- intersect( ind1, ind2 )
if ( length(ind1)==length(ind2) ){ typeK1 <- "Rasch" }
itemtype <- ifelse( maxK1==1, typeK1, poly.itemtype )
mirtpars <- mirt::mirt( dat, mirtmodel1, itemtype=itemtype, pars="values")
#***** handle guessing parameters
lavmodel21 <- lavmodel2[ lavmodel2$op=="?=", ]
lavmodel21 <- lavmodel21[ lavmodel21$rhs=="g1", ]
lavmodel21 <- lavmodel21[ lavmodel21$free > 0, ]
if ( nrow(lavmodel21) > 0 ){
ind <- which( ( mirtpars$item %in% lavmodel21$lhs ) &
( mirtpars$name=="g") )
ind <- match( paste0(lavmodel21$lhs,"-","g"),
paste0(mirtpars$item,"-",mirtpars$name) )
mirtpars[ind,"value"] <- .25
mirtpars[ind,"est"] <- TRUE
} else { # no guessing parameters
ind <- which( ( mirtpars$item %in% items ) &
( mirtpars$name=="g") )
if ( length( ind ) > 0 ){
mirtpars[ind,"value"] <- 0
mirtpars[ind,"est"] <- FALSE
}
}
#***** handle slipping parameters
lavmodel21 <- lavmodel2[ lavmodel2$op=="?=", ]
lavmodel21 <- lavmodel21[ lavmodel21$rhs=="s1", ]
lavmodel21 <- lavmodel21[ lavmodel21$free > 0, ]
if ( nrow(lavmodel21) > 0 ){
ind <- match( paste0(lavmodel21$lhs,"-","u"),
paste0(mirtpars$item,"-",mirtpars$name) )
mirtpars[ind,"value"] <- .95
mirtpars[ind,"est"] <- TRUE
} else { # no guessing parameters
ind <- which( ( mirtpars$item %in% items ) & ( mirtpars$name=="u") )
if ( length( ind ) > 0 ){
mirtpars[ind,"value"] <- 1
mirtpars[ind,"est"] <- FALSE
}
}
#------------
#**** constraints for parameter values
lavmodel21 <- lavmodel2[ lavmodel2$free==0, ]
LL <- nrow(lavmodel21)
if (LL>0){
for (ll in 1:LL){
item.ll <- NULL
lavmodel21.ll <- lavmodel21[ll,]
# factor loadings
if ( lavmodel21.ll$op=="=~" ){
par.ll <- paste0("a",match( paste0(lavmodel21.ll$lhs), factors ) )
item.ll <- paste0(lavmodel21.ll$rhs)
}
# thresholds
if ( lavmodel21.ll$op=="|" ){
par.ll <- gsub( "t", "d", lavmodel21.ll$rhs[1] )
if (maxK==1){ par.ll <- "d" }
item.ll <- paste0(lavmodel21.ll$lhs)
}
# guessing/slipping parameters
if ( lavmodel21.ll$op=="?=" ){
par.ll <- gsub( "g1", "g", lavmodel21.ll$rhs[1] )
par.ll <- gsub( "s1", "u", par.ll )
if (par.ll=="u"){
lavmodel21.ll$ustart <- 1 - lavmodel21.ll$ustart
}
item.ll <- paste0(lavmodel21.ll$lhs)
}
# covariances
if ( lavmodel21.ll$lhs %in% colnames(dat) ){
lavmodel21.ll$op <- ""
}
if ( lavmodel21.ll$op=="~~" ){
item.ll <- "GROUP"
par.ll <- c( match( lavmodel21.ll$lhs, factors ),
match( lavmodel21.ll$rhs, factors ) )
par.ll <- paste0("COV_",
paste0( sort(par.ll, decreasing=TRUE ), collapse="" ) )
}
# covariances
if ( lavmodel21.ll$op=="~1" ){
item.ll <- "GROUP"
par.ll <- match( lavmodel21.ll$lhs, factors )
if ( is.na( par.ll ) ){ item.ll <- NULL }
par.ll <- paste0("MEAN_", par.ll )
}
#++ parameter fixing
if ( ! is.null(item.ll) ){
ind.ll <- which( ( mirtpars$item==item.ll ) & ( mirtpars$name==par.ll ) )
mirtpars[ind.ll,"est"] <- FALSE
mirtpars[ind.ll,"value"] <- lavmodel21.ll$ustart
}
}
}
#------------
#*** estimate mirt model
res <- NULL
if ( est.mirt ){
res$mirt <- mirt::mirt( dat, model=mirtmodel1, pars=mirtpars,
itemtype=itemtype, ... )
} # else {
res$mirt.model <- mirtmodel1
res$mirt.syntax <- mirtmodel
res$mirt.pars <- mirtpars
res$lavaan.model <- lavmodel2
res$dat <- dat
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.