R/pcm.fit.R

Defines functions pcm.fit

Documented in pcm.fit

## File Name: pcm.fit.R
## File Version: 0.22

#############################################
# fit partial credit (or Rasch model)
pcm.fit <- function( b, theta, dat )
{
    N <- length(theta)
    if ( is.vector(b) ){
        b <- matrix( b, ncol=1 )
    }
    K <- ncol(b)
    I <- nrow(b)
    b[ is.na(b) ] <- 999
    dat.ind <-  1 - is.na(dat)
    dat[ is.na(dat) ] <- 0

    # create probability matrix
    rprobs <- array( 0, dim=c( N, K +1, I ) )
    score_vec <- 0:K
    M0 <- TAM::tam_outer( theta, score_vec )
    for (ii in 1:I){
        M1 <- M0
        M1[,-1] <- M1[,-1] - TAM::tam_matrix2( b[ii,], nrow=N )
        M1_max <- rowMaxs.sirt(matr=M1)$maxval
        M1 <- M1 - M1_max
        M1 <- exp(M1)
        M1 <- M1 / rowSums(M1)
        rprobs[,,ii] <- M1
    }

    # expected response
    Eni <- array( 0, dim=c(N,I) )

    M2 <- TAM::tam_matrix2( 0:K, nrow=N)
    for (ii in 1:I){
        Eni[,ii] <- rowSums( M2*rprobs[,,ii]  )
    }
    # calculate residuals
    Yni <- dat - Eni
    # calculate variances
    Wni <- array( 0, dim=c(N,I) )
    for (ii in 1:I){
        Wni[,ii] <- rowSums( ( M2  - Eni[,ii] )^2 *rprobs[,,ii]  )
    }
    # calculate kurtosis
    Cni <- array( 0, dim=c(N,I) )
    for (ii in 1:I){
        Cni[,ii] <- rowSums( ( M2  - Eni[,ii] )^4 *rprobs[,,ii]  )
    }
    # standardized residual
    zni <- Yni / sqrt( Wni )
    #************************************
    # item fit statistics
    N.item <- colSums( dat.ind )
    #--- Outfit
    outfit <- colSums( zni^2 * dat.ind ) / N.item
    itemfit <- data.frame( "item"=colnames(dat), "outfit"=outfit )
    qi <- sqrt( colSums( dat.ind * Cni / Wni^2  ) / N.item^2 - 1 / N.item )
    itemfit$outfit.t <- ( itemfit$outfit^(1/3) - 1 ) * ( 3 / qi ) + qi / 3
    #--- Infit
    itemfit$infit <- colSums( dat.ind * Wni * zni^2 ) / colSums( dat.ind * Wni )
    qi <- sqrt( colSums( dat.ind * ( Cni - Wni^2 )  ) / ( colSums(Wni*dat.ind)  )^2  )
    itemfit$infit.t <- ( itemfit$infit^(1/3) - 1 ) * ( 3 / qi ) + qi / 3
    itemfit0 <- itemfit
    #************************************
    # person fit statistics
    N.item <- rowSums( dat.ind )
    #--- Outfit
    outfit <- rowSums( zni^2 * dat.ind ) / N.item
    personfit <- data.frame( "person"=1:N, "outfit"=outfit )
    qi <- sqrt( rowSums( dat.ind * Cni / Wni^2  ) / N.item^2 - 1 / N.item )
    personfit$outfit.t <- ( personfit$outfit^(1/3) - 1 ) * ( 3 / qi ) + qi / 3
    #--- Infit
    personfit$infit <- rowSums( dat.ind * Wni * zni^2 ) / rowSums( dat.ind * Wni )
    qi <- sqrt( rowSums( dat.ind * ( Cni - Wni^2 )  ) / ( rowSums(Wni*dat.ind)  )^2  )
    personfit$infit.t <- ( personfit$infit^(1/3) - 1 ) * ( 3 / qi ) + qi / 3
    # output
    res <- list("itemfit"=itemfit, "personfit"=personfit)
    return(res)
}
#############################################################

Try the sirt package in your browser

Any scripts or data that you put into this service are public.

sirt documentation built on May 29, 2024, 8:43 a.m.